
Communicating Process Architectures 2007
Alistair A. McEwan, Steve Schneider, Wilson Ifill, and Peter Welch
IOS Press, 2007
c© 2007 The authors and IOS Press. All rights reserved.

339

A Native Transterpreter for the
LEGO Mindstorms RCX

Jonathan SIMPSON, Christian L. JACOBSEN and Matthew C. JADUD

Computing Laboratory, University of Kent,
Canterbury, Kent, CT2 7NZ, England.

{jon , christian , matt} @transterpreter.org

Abstract. The LEGO Mindstorms RCX is a widely deployed educational robotics
platform. This paper presents a concurrent operating environment for the Mindstorms
RCX, implemented natively using occam-pi running on the Transterpreter virtual ma-
chine. A concurrent hardware abstraction layer aids both the developer of the operat-
ing system and facilitates the provision of process-oriented interfaces to the underly-
ing hardware for students and hobbyists interested in small robotics platforms.

Introduction

At the University of Kent, we have access to over forty LEGO Mindstorms RCX robotics
kits for use in teaching. Additionally, it is our experience through outreach to local secondary
schools and competitions like the FIRST LEGO League[1] that the RCX is a widely available
educational robotics platform. For this reason, we are interested in a fully-featured occam-π
interface to the LEGO Mindstorms.

The Transterpreter, a portable runtime for occam-π programs, was originally developed
to support teaching concurrent software design in occam2.1 on the Mindstorms[2]. In its
original implementation, the Transterpreter ran on top of BrickOS, a POSIX-compliant op-
erating system for the RCX[3]. However, as the Transterpreter has grown to support all of
occam-π, it has used up all of the available space on the RCX. Given that the Transterpre-
ter will no longer fit onto the RCX along with BrickOS, a new approach is required for a
renewed port to the system.

To resolve the memory space issues, we can create a direct hardware interface for the
Transterpreter that removes the underlying BrickOS operating system, freeing space to ac-
commodate the now larger virtual machine. To achieve this, we can interact both with rou-
tines stored in the RCX’s ROM as well as directly with memory-mapped hardware. While it
was originally imagined that a C ‘wrapper’ would need to bind the virtual machine to a given
hardware platform, we have discovered that much of this work can instead be done directly
from occam-π, thus providing a concurrency-safe hardware abstraction layer.

1. Background

The LEGO Mindstorms Robotics Command eXplorer (RCX) is a widely available educa-
tional robotics platform. It takes the form of a large LEGO ‘brick’ containing a Renesas
H8/300 processor running at 16MHz, 16KB of ROM, and 32KB of RAM shared by the
firmware image and user programs. There are three input ports for connecting a variety of
sensors, three output ports for motors, and an infra-red port used for uploading of firmware
and programs. This infra-red port can also be used for communicating with other robots.
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1.1. The Transterpreter

The Transterpreter is a virtual machine for occam-π written in ANSI C. At its inception, the
virtual machine was designed to bring the occam2.1 programming language to the RCX as
an engaging environment for teaching concurrency. The Transterpreter has platform-specific
wrappers which link the portable core of the interpreter to the world around it[4]. In the case
of the LEGO Mindstorms, a wrapper was originally written to interface with BrickOS[3].
However, there is limited memory space on the RCX, as shown in Figure 1. The choice of
building on top of BrickOS was made because it was the quickest and easiest way to get the
Transterpreter running on the LEGO Mindstorms; however, it proved impractical for running
all but the smallest and simplest of programs.
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Figure 1. The memory distribution of the original Transterpreter RCX wrapper, using BrickOS.
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Figure 2. The memory distribution of the native Transterpreter RCX wrapper.

It should be noted that the remaining 3KB of memory space shown in Figure 1, left avail-
able after uploading the firmware and user program, was shared to meet the runtime needs of
BrickOS, the Transterpreter, and the user’s occam2.1 program. As a user’s programs grew,
this 3KB would be used both by the increased bytecode size of their program as well as a
likely increase in memory usage for the larger program.

The Transterpreter virtual machine has grown to support the occam-π programming
language[5], an extension of occam2.1 [6]. The extended occam-π feature set is extremely
useful for concurrent robotics programming[7]. Unfortunately, supporting these extensions
grew the compiled Transterpreter binary by 3KB, and as a result, running the Transterpre-
ter on top of BrickOS is no longer a possibility. By running the Transterpreter natively on
the RCX, as shown in Figure 2, we leave 12KB of free memory for the execution of user
programs on the virtual machine.

2. Design Considerations

Our design goal is to implement a runtime and process interface for the LEGO Mindstorms
RCX, and as such we must provide hardware interfaces to the occam-π programmer. When
writing code to interface with the RCX hardware there are three main approaches which can
be taken: running with an existing operating system providing the hardware interface, using
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a C library to interface with ROM functions, or interfacing directly with ROM functions and
memory from occam-π.
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Figure 3. Potential design choices for a new RCX port of the Transterpreter.

2.1. On Top of an Existing Operating System

Running on top of an existing operating system for the RCX was previously explored by
running the Transterpreter on top of BrickOS (Figure 3(a)). This saved a great deal of work,
as BrickOS exposed a high-level hardware API to the Transterpreter. However, this approach
introduces additional storage and run-time memory space penalties, and is not practical given
the current size of the virtual machine. In Figure 1 on the facing page, BrickOS is reported
as occupying 12KB of space on the LEGO Mindstorms; this is after 7KB of unnecessary
code had been removed from the operating system; reducing this further would be extremely
challenging. To support occam-π on the Mindstorms, another approach must be taken, and
a new hardware abstraction layer developed.

2.2. Through a C Library

The ROM image supplied with the LEGO Mindstorms contains the ‘RCX executive’ (Fig-
ure 4), which loads at power on and contains routines for interfacing with the hardware.
These ROM routines are used by the standard LEGO firmware supplied with the Mindstorms
robotics kit.
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Figure 4. The RCX Executive with both ROM and RAM components, loaded at power-on.

These ROM routines can be exploited to give low-level control over the device without
additional memory space penalties, as they are always present in the RCX ROM. However,
these routines are not suitable for end-users to program against; they are far too low-level for
everyday use.
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librcx is a C library that wraps all of the available ROM routines, and provides C
programmers with a slightly more usable interface to the hardware[8]. One possible approach
to porting the Transterpreter to the LEGO Mindstorms would be to do all of the hardware
abstraction in C, as shown in Figure 3(b) on the preceding page. The problem with this
approach is that librcx was designed for use from C and not from a concurrent programming
language. Any hardware abstraction layer written in C would not interact correctly with the
occam-π scheduler, which could lead to race hazards (or worse), the likes of which are
avoided if the abstraction layer is written in occam-π.

2.3. Native Interaction

At its core, librcx has five assembly code blocks, each of which calls a ROM routine ac-
cepting a specific number of parameters. By exposing these five function calls to occam-π,
we can write virtually all of the operating system replacement code in without resorting to C,
and leverage the concurrency primitives provided by occam-π (Figure 3(c) on the previous
page). This also allows a process interface to the hardware to be exposed naturally, and the
‘operating system’ components to benefit from a safe, concurrent runtime.

By layering processes, some which provide low-level access to hardware and others that
form a higher level API for programmers, we can offer different interfaces to different types
of programmer. Novice users might work with the higher level processes, unaware that these
processes hide details of the underlying functionality. More advanced users or the system
programmer may wish to use the low-level processes to perform specific tasks or interact
with the hardware more directly. We discuss this further in Section 4 on page 344.

3. A Concurrent Hardware Abstraction Layer

There is one simple reason for wanting to write as much of our code in occam-π as pos-
sible: safety. BrickOS[3] and LeJOS[9], two particularly prominent examples of third-party
runtimes for the RCX, both use a time-slicing model of concurrency, where multiple ‘tasks’
are run on the system at the same time. This time-slicing model is then mapped to a threaded
programming model for the user. This is a fundamentally unsafe paradigm to program in,
regardless of how careful one is[10].

This would not be a problem, except that robotics programming naturally tends to in-
volve multiple tasks running concurrently. For this reason, threading finds its way into all
but the most trivial programs written for BrickOS or LeJOS. In “Viva la BrickOS,” Hunder-
smarck et al. noted that that the default scheduling mechanisms in BrickOS are prone to pri-
ority inversion under heavy load[11]. By developing from the hardware up in occam-π, we
protect both the operating system developer as well as the end-programmer from these kinds
of basic concurrency problems, and strive to provide a safer environment for programming
robots like the RCX.

3.1. Implementation Considerations

There are a number of implementation challenges that arise given that we have chosen to
natively interface the Transterpreter with the RCX. occam-π provides two ways to access
underlying hardware functionality: the Foreign Function Interface (FFI) and placement of
variables at memory locations. When used correctly, both allow us to safely interact with the
underlying hardware from occam-π.

3.1.1. The Foreign Function Interface

The RCX’s ROM routines are made available through five core C functions, which we can
access through occam-π’s Foreign Function Interface mechanism[12]. Unfortunately, the
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RCX hardware is big-endian, while the Transterpreter runs as a little-endian virtual machine.
This means that considerable byte-swapping is required on values and addresses being passed
back and forth between the occam-π and C, as can be seen in Listing 1.

void rcall 1 (int w∗)
{

rcall1 (SwapTwoBytes(w[0]), SwapTwoBytes(w[1]));
}

Listing 1. rcall 1, a FFI call that passes its parameters to the RCX’s ROM.

The five core calls to LEGO ROM routines, once provided to occam-π via the FFI,
allow the majority of the ROM’s functionality to be accessed. In cases where return values
are required, such as when reading from a sensor, individual FFI calls must be written that
marshal the values correctly to and from C (eg. swapping from big-endian to little-endian on
their way back into occam-π). For example, the C function rcall 1() shown in Listing 1
can be accessed via the FFI from occam-π as shown in Listing 2.

−− ROM addresses for sensor access.
VAL [3]INT sensor.addr IS [#1000, #1001, #1002]:
−− Constants for system developer & user programming.
DATA TYPE SENSOR.NUM IS INT:
VAL SENSOR.NUM SENSOR.1 IS 0:
VAL SENSOR.NUM SENSOR.2 IS 1:
VAL SENSOR.NUM SENSOR.3 IS 2:

#PRAGMA EXTERNAL "PROC C.tvmspecial.1.rcall.1 (VAL INT addr, param) = 0"
INLINE PROC rcall.1 (VAL INT addr, param)
C.tvmspecial.1.rcall.1 (add, param)

:

PROC sensor.active (VAL SENSOR.NUM sensor)
rcall.1(#1946, sensor.addr[(INT sensor)])

:

Listing 2. sensor.active sets a sensor on the RCX ‘active’ through the occam-π FFI.

3.1.2. Variable Placement in Memory

occam-π supports the placement of variables at specific addresses in memory. As inputs and
outputs on the RCX are memory-mapped, occam-π processes can be written that interface
directly with the hardware by reading and writing to specific locations. Use of variable place-
ment speeds up the system significantly, as the interpreter can read values directly rather than
making calls into the RCX’s ROM routines through C.

Endianness continues to be an issue when using variable placement with multi-byte vari-
ables, as values must again be byte-swapped due to the difference in endianness between
hardware and virtual machine. Additionally, as functions of the RCX’s ROM are being called,
the firmware works with the same memory addresses and care must be taken not to disturb
memory values that are in use by the ROM.

The use of variable placement to read the button values from the RCX, as shown in
Listing 3 on the following page, is an example of how hardware interactions can be simplified
and the number of calls through C to the ROM can be reduced. Additionally the memory
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PROC run.pressed (CHAN BOOL pressed!)
INITIAL INT port4.dr.addr IS #FFB7:
[1]BYTE port4.dr:
PLACE port4.dr AT port4.dr.addr:
#PRAGMA DEFINED port4.dr
WHILE TRUE
IF
−− Masking bit 2 of the byte value.
(port4.dr[0] /\ #02) = 0
out ! TRUE

TRUE
SKIP

:

Listing 3. run.pressed uses a variable placed in memory to read the ‘Run’ button state.

read operation can happen much more quickly than an equivalent FFI call and the necessary
byte-swapping between occam-π and C that ensues. Endianness issues are avoided in this
particular case, as the value of button presses are stored as individual bit flags in a BYTE value.

3.2. Advantages of Concurrency

By working with a concurrent language all the way from the hardware up there are advantages
gained in both safety and simplicity. The LEGO Mindstorms RCX contains a segmented
LCD display, including two segments used to draw a walking person on the screen (Figure 5).
When debugging occam-π code running on the RCX it can be hard to tell if the runtime
environment has crashed or deadlocked, as printing is frequently not possible once an error
has occurred.

Figure 5. The ‘walking figure’ on the LCD display of the RCX

By running the debug.man process in parallel with other code being tested (like the
process foo(), shown in Listing 4 on the facing page), it is possible to see that the VM is
running, executing instructions and scheduling correctly. Using threading to get the same
effect from a C program would have introduced additional complexity, whereas in occam-π
it is natural to use concurrency for developing and debugging programs on what is otherwise
a “black box” system.

4. Toward a Process Interface

Our goal is to have a complete, process-oriented interface to the LEGO Mindstorms RCX.
This involves developing a hierarchy of processes, starting with an API for programmers
to use down through direct access to the hardware. Looking just at input, and particularly
the LEGO light sensor, we can see the stacking of one process on top of another to pro-
vide a concurrent interface to the underlying, sequential hardware. The occam-π code for
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#INCLUDE "LCD.occ"

PROC debug.man ()
WHILE TRUE
SEQ
−− Sleeping causes us to deschedule
sleep (500 ∗ MILLIS)
lcd.set.segment (LCD.STANDING)

sleep (500 ∗ MILLIS)
lcd.set.segment (LCD.WALKING)

:

PROC main (CHAN BYTE kyb?, scr!, err!)
PAR

debug.man()
foo()

:

Listing 4. The debug.man process helps detect VM faults

light.sensor is shown in listing 5. This process provides a simple and logical end user
interface for reading values from a light sensor, connected to one of the input ports on the
RCX.

The light.sensor process abstracts across a more generic sensor process. Each type
of sensor for the LEGO Mindstorms has its own read mode, and may be active or passive.
Hiding these details from the end user lets them develop programs in terms of the robotics
hardware sitting in front of them, rather than generic interfaces. Layering the processes in
this way also means that more advanced programmers can use the sensor process directly, as
they may have created their own ‘homebrew’ sensors for the RCX and want to have explicit
control over the combination of parameters used to set up the sensor.

PROC light.sensor (VAL SENSOR.NUM num,
VAL INT delay,
CHAN SENSOR.VAL out!)

CHAN SENSOR.VAL values:
PAR
sensor(num, delay, SENSOR.LIGHT, SENSOR.MODE.PERCENT, values!)
SENSOR.VAL value:
WHILE TRUE
SEQ
values ? value
out ! value

:

Listing 5. The light.sensor process abstracts over a generic sensor process.
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5. Leveraging occam-π: A small example

The most challenging part of robotic control—the scheduling and interleaving of sensor read-
ings, computation over that data, and the control of one or more actuators—is handled trans-
parently when developing programs for the RCX in occam-π running on the Transterpreter.
While the example show here is simple, it provides a taste for the kinds of things that are
possible when we target a concurrent programming language at a small robotics platform like
the RCX.

Figure 6 illustrates a process network where each sensor on the LEGO Mindstorms com-
municates to a work process, which performs a calculation over the sensor data and then
sends commands on to the associated motor process. Specifically, if the light sensor is read-
ing a particularly light reading (a value greater than 512), the motor is set to spin forwards;
otherwise, it is set to spin backwards.

Listing 6 provides the code for this network, and demonstrates the use of a replicated
PAR for initializing these nine concurrent processes. Furthermore, it illustrates a few aspects
of the concurrent API provided for interfacing the LEGO Mindstorms. Types have been de-
fined for all sensor and motor channels: sensors communicate SENSOR.VALs, while motors
expect to receive MOTOR.CMDs, a tagged protocol that encourages the programmer to be clear
about whether a motor is running in a forward or backwards direction. This helps keep our
programs semantically clear, and let the type checker help make sure programs are correct.
Additionally, the light.sensor process allows the programmer to determine how often the
sensor will be sampled; in this example, we are sampling the three sensors once every one,
two, and three seconds (respectively).

main
PAR i = 0 FOR 3

light.sensor work motorvalues cmd

Figure 6. A process network connecting sensors to motors.

This small example does not illustrate any of the more advanced features of occam-
π: SHARED channels, MOBILE data, BARRIERs, and so on. It does demonstrate, however, that
we can quickly and easily set up many concurrent tasks and execute them directly on the
LEGO Mindstorms. As our code grows more complex (as described in [7]), the benefits of a
concurrent language and runtime for robotics becomes more apparent.

6. Conclusions and Future Work

Our initial goal was to resuscitate the LEGO Mindstorms RCX as a full-featured platform
for occam-π robotics. To achieve this, we had to explore and overcome a number of chal-
lenges in developing a new wrapper for the Transterpreter and creating a concurrent, process-
oriented interface for the RCX’s functionality. However, a great deal more work is required
before we have a platform that is casually usable by a robotics hobbyist or novice program-
mer.

The porting of the virtual machine and development of a concurrent hardware abstrac-
tion layer is only the first step towards providing a generally usable occam-π robotics envi-
ronment. On top of the hardware abstraction layer, we need to write a small operating system
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#INCLUDE "Sensors.occ"
#INCLUDE "Motors.occ"
#INCLUDE "common.occ"

PROC work (CHAN SENSOR.VAL in?, CHAN MOTOR.CMD out!)
SENSOR.VAL x:
WHILE TRUE
SEQ
in ? x
IF
x > 512
out ! forward; 5

TRUE
out ! backward; 5

:

PROC main ()
[3]CHAN SENSOR.VAL values:
[3]CHAN MOTOR.CMD cmd:
PAR i = 0 FOR 3

PAR
light.sensor(i, ((i + 1) ∗ SECONDS), values[i]!)
work(values[i]?, cmd[i]!)
motor(i, cmd[i]?)

:

Listing 6. A sample program that maps sensor values to motor speeds in parallel.

or monitor that will run along side user programs and provide a basic user interface for the
RCX. For example, there are four buttons on the RCX: On-Off, View, Prgm, and Run. At the
least, we need to allow users to turn the brick on and off as well as start and stop their pro-
grams. The monitor would also need to handle the upload of new programs; the RCX main-
tains its memory state while powered down, and therefore it is possible to keep the runtime
and monitor on the RCX, while the user might upload new bytecode to be executed. This
saves the user from the slow and tedious process of uploading a complete virtual machine
every time they change their program.

Even with a simple operating system running along side user programs, there is still
more work to be done to provide a usable robotics programming environment. Currently, we
provide a simplified IDE for programming in occam-π on Mac OSX, Windows, and Linux
platforms. This IDE, based on JEdit1, is extensible through plugins. Our old plugin must be
updated to support the uploading of our new Transterpreter-based firmware to the RCX, as
well as the compilation of programs for running in this 16-bit environment. This is not hard,
but handling the inevitable errors that will occur (failed uploads over IR, and so on) and
reporting them to the user in a clear and meaningful manner is subtle, but critical work. We
say “critical” because the success of a language is determined as much by the quality of its
end-user tools as well as the quality and expressive power of the language itself.

With a usable programming environment in place, we would then like to develop a set of
introductory programming exercises using our process-oriented interface to the LEGO Mind-
storms. We believe the RCX is an excellent vehicle for teaching and learning about concur-
rency. While the existing API is already clearly documented, additional materials are abso-
lutely necessary to support novice learners encountering concurrent robotics programming in
occam-π for the first time.

1http://www.jedit.org/
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In this vein, we are ultimately interested in the combination or creation of a visual pro-
cess layout tool like gCSP[13], POPExplorer[14], or LOVE[15] that supports our process-
oriented interface to the RCX. The semantics of occam-π nicely lend themselves to visu-
alization, and a toolbox of pre-written occam-π processes to enable graphical, concurrent
robotics programming feel like a natural combination. This could potentially offer an en-
vironment where novices could begin exploring concurrency without having to (initially)
write any occam-π code at all. In the long run, our goal is to reduce the cost of entry for
new programmers to explore occam-π in problem spaces that naturally lend themselves to
process-oriented solutions.
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