
High Level Paradigms for the Structuring of Concurrent
Systems

a thesis submitted to
The University of Kent at Canterbury
in the subject of Computer Science

for the degree
of Doctor of Philosophy.

By
Jonathan Simpson

March 2012

Generated: 23/06/2014

Abstract

¿e need for so ware concurrency and the availability of hardware parallelism exist in
symbiosis; the ability to exploit parallelism via concurrency is an increasingly important part
of so ware design and development. Process-oriented design provides a model, of systems
composed from networks of concurrently executing communicating processes, which eases
the creation of concurrent programs that behave correctly. Robots are agents in the world
and typically have many tasks to achieve simultaneously; writing robot control so ware
requires coordination of these tasks. Given their interaction with the world, the need to
complete concurrent tasks and the availability of parallel hardware, it is natural to consider
designing and implementing robot control systems using a programming model specialised
for concurrent systems.

¿is thesis presents the application of process-oriented design and programming to ro-
botic control through the re-design and re-implementation of existing so ware architectures
and hardware interfaces. ¿e contributions made in this thesis demonstrate properties con-
sistent with a closeness of mapping between the domain and programming model. Evidence
is presented that application of a concurrent process-oriented programming model does not
negatively e�ect the responsiveness of systems and facilitates more direct representation of
the concurrency inherent to the task.

¿is thesis presents a visual program design tool, POPed, which is able to produce
executable programs using process-oriented design techniques involving the structured
composition of processes. Work reported on POPed demonstrates that process-oriented
programs may be created via pure composition using high-level design techniques. ¿is
thesis also presents a methodology and tool for visualising the runtime state of process-
oriented programs, further extending the applicability of the design visualisations from
program creation to debugging. Evidence is presented of this tool allowing exposition of
program properties which lead to common concurrency errors (livelock and deadlock) in
process-oriented programs.

iii

iv

Acknowledgements

I wish to thank all of those with whom I have interacted personally and professionally
throughout the Ph.D. process. Your number is greater than I could hope to list — you made
the process memorable and enjoyable.

I would like to give thanks to my family: Ronald, June and Stephen. I cannot thank you
enough for your unconditional support in all that I do.

To Christian, Damian and Matt: you piqued my interest and started this journey. I am proud
to count you not only as collaborators but friends and owe you a debt of gratitude for support
throughout. May our paths cross long into the future.

To Carl: for being the true origin of the bouncy medicine ball1, an excellent o�ce-mate and
good friend. Your insight and advice has been to my aid on many occasions.

To Professor PeterWelch andDoctor Fred Barnes— for agreeing to superviseme and for your
feedback and support throughout. ¿e Concurrency Research Group provided a thought
provoking and exciting environment in which to work, I thank you for allowing me to be a
part of it.

To my examiners, Professor Alan Win�eld and Professor Michael Kölling — it is a privilege
to have been examined by yourselves and I am grateful for your time and thoughtful input,
which has been to the bene�t of my work.

Finally, my thanks to the School of Computing for funding and support, in particular the
Course Administration O�ce for their aid in navigating the process throughout.

1Context may be found in the acknowledgements of Dimmich’s Doctoral ¿esis [Dim09].

v

vi

Contents

Abstract iii

Acknowledgements v

Contents 1

List of Figures 7

List of Listings 13

1 Introduction 15

1.1 Origins . 17

1.2 Relation to the Author’s Papers . 18

1.3 Impact . 20

1.4 Contributions . 22

1.5 Structure . 23

2 Motivation and Background 25

2.1 Trends toward Multi-core and Many-core . 25

2.2 Process-oriented Programming . 28

2.2.1 Why occam-pi for Process-oriented Programming? 28

2.2.2 occam . 30

2.2.3 occam from Transputers to KRoC . 31

2 CONTENTS

2.2.4 occam-pi . 31

2.2.5 ¿e Transterpreter Virtual Machine 32

2.3 Robotics . 32

2.3.1 Sense . 33

2.3.2 Plan . 33

2.3.3 Act . 34

2.3.4 Robotics Paradigms . 34

2.4 Robotics and Concurrency . 36

2.4.1 A Demonstration of Process-oriented Robot Control 41

2.5 Robotics in Computer Science Education . 43

2.6 Pedagogy of Process-oriented Robotics . 45

2.6.1 RoboDeb and Player/Stage . 45

2.6.2 Cylons . 47

2.6.3 Life on Mars . 47

2.7 Wider Pedagogy of Concurrent Systems . 50

2.7.1 BACI . 50

2.7.2 SPIN and FDRModel Checkers . 50

2.7.3 Elucidate . 51

2.7.4 ¿readMentor . 52

2.7.5 ParaGraph . 52

2.7.6 PARADE, POLKA and XTANGO . 52

3 Process-oriented Robotics 55

3.1 Process-oriented Programming on Robot Platforms 56

3.1.1 Run-time Support . 57

3.1.2 Process-oriented Hardware Interfaces 57

3.1.3 Calling into Existing Libraries . 58

3.1.4 ActivMedia Pioneer 3-DX . 60

CONTENTS 3

3.1.5 LEGOMindstorms RCX . 62

3.1.6 Surveyor SRV-1 . 65

3.1.7 LynxMotion AH3-R . 69

3.2 Braitenberg Vehicles . 69

3.3 Process-oriented Robot Architectures . 71

3.3.1 Subsumption Architecture . 72

3.3.2 Colony Architecture . 84

3.3.3 Action Selection . 85

3.3.4 Motor Schema . 87

3.3.5 Distributed Architecture for Mobile Navigation 90

3.4 Distributed Robotics Architectures . 91

3.5 Concurrency Patterns in Robotics . 93

3.6 Process-oriented Robotics: A Comparative Case Study 94

3.6.1 Problem De�nition and Experimental Setup 94

3.6.2 Implementation Properties . 96

3.6.3 Evaluation . 98

3.7 Conclusions . 100

4 ADemonstrator Environment 101

4.1 Visual Expression of Process-oriented Programs 102

4.1.1 Drawing Process-oriented Programs 104

4.2 Existing Visual Programming Environments 107

4.2.1 Visual Programming for Robotics . 107

4.2.2 Visual Process-oriented Programming 113

4.2.3 Summary of Features . 120

4.3 Design . 122

4.3.1 Limitations of the Visual Environment 127

4.3.2 Robotics Support . 129

4 CONTENTS

4.4 Implementation . 131

4.4.1 User Interface . 133

4.4.2 Process Canvas . 133

4.4.3 Process De�nition Blocks . 134

4.4.4 Toolbox Processes . 136

4.4.5 Use of Toolbox Processes . 141

4.4.6 Emulation of Generic Types . 143

4.4.7 State of Implementation . 145

4.4.8 Re�ections on Implementation . 146

5 Introspection and Debugging 147

5.1 Errors . 148

5.1.1 Compilation Errors . 148

5.1.2 Run-time Errors . 149

5.1.3 Logic Errors . 149

5.2 Concurrency Errors . 150

5.2.1 Non-determinism . 150

5.2.2 Livelock and Deadlock . 151

5.2.3 Race conditions . 152

5.2.4 Debugging . 152

5.3 Related Environments . 155

5.3.1 INMOS Transputer Development System Debugger 156

5.3.2 GRAIL . 156

5.3.3 POPExplorer . 157

5.4 A Debugging Environment for Process-oriented Programs 158

5.4.1 Visualisation of Execution State . 159

5.4.2 Layout . 161

5.5 Proof of Concept Implementation . 162

CONTENTS 5

5.5.1 Virtual Machine Support for Debugging 162

5.5.2 Tracing . 163

5.5.3 Trace Visualisation . 164

6 Conclusions and Further Work 169

6.1 Future Work: Process Architectures for Robotics 171

6.1.1 Hybrid Architectures . 171

6.1.2 Platforms . 171

6.1.3 Dynamic occam-pi language features 172

6.1.4 Parallel Languages and Robot Control Frameworks 173

6.1.5 Network Distribution . 174

6.1.6 Multi-core and Many-core Robotics 175

6.2 Future Work: Visual Design and Debugging 175

6.2.1 Visual Programming . 175

6.2.2 Formal Visual Language Design . 176

6.2.3 Code Editing . 176

6.2.4 Code Generation Advancements . 177

6.2.5 Introspection . 177

Bibliography 179

6 CONTENTS

List of Figures

2.1 ¿eHierarchical Control Paradigm, consisting of Sense, Plan, and Act primit-
ives of robotic control . 35

2.2 ¿e Behavioural Control Paradigm, consisting of Sense and Act primitives 36

2.3 Process network diagram for the process-oriented robot program shown in
Listing 2.2 . 38

2.4 Chalkboard design of a process-oriented subsumptive robot control system
which negotiates an environment and follows the same path home 42

2.5 Process-network diagram for a subsumptive robot control system to negotiate
an environment and follow the same path home, as sketched in Figure 2.4 . 42

2.6 RoboDeb in action, a typical RoboDeb session with Player simulator and jEdit
occam-pi editing environment, from [JJ07]. 46

2.7 A screenshot of the Mars Simulator from the Life on Mars assignment . . . 48

3.1 Architectural diagram of the occam-pi process interface and C Foreign Func-
tion wrapping for reading from a laser in Player/Stage from occam-pi . . . 60

3.2 An illustration of the RCX programmable brick supplied with the LEGO
Mindstorms RCX invention kit . 62

3.3 Memory consumption for the Transterpreter VM running as a BrickOS pro-
gram (top) and natively, without an underlying operating system (bottom) 64

3.4 ¿e Surveyor SRV-1 Mobile Robot . 66

3.5 Architectural diagram of the Surveyor SRV-1 port of the Transterpreter virtual
machine, showing the �rmware processes active and a user program loaded. 68

3.6 Vehicle 2a, a Robot that ‘avoids’ light, and Vehicle 2b, a Robot that ‘likes’ light 70

8 LIST OF FIGURES

3.7 A RCX controlled vehicle and occam-pi process networks for robot programs
that ‘avoid’ light (top) and ‘like’ light (bottom) 70

3.8 Amodule for a Subsumption Architecture, with a suppressor on an input line
and an inhibitor on an output line . 73

3.9 Process diagram for suppress.int, an occam-pi process which acts as a
suppressor on channels of integers . 74

3.10 Process diagram for inhibit.int, an occam-pi process which acts as an
inhibitor on channels of integers . 75

3.11 A Subsumption Architecture-based bump and wander program for a robot
with three levels of competence. 78

3.12 Simulation results when running two levels of competence and subsequently
adding the third level of competence . 80

(a) Demonstrating two levels of competence, the robot is able to turn and
back away from the wall when it gets too close. 80

(b) Demonstrating all three levels of competence, the robot backs away from
the wall and performs multi-point turns to navigate the environment. 80

3.13 A Subsumption Architecture-based bump and wander program for a robot
with three levels of competence, from [PSST11] 83

3.14 A set of Action-Selection competence modules to move within a space. Activ-
ation spread is accomplished via bi-directional connections between modules,
as shown. 85

3.15 A motor-schema based control program to navigate a robot to investigate
motion and run away if approached. 88

3.16 State machine of the planner for an example control program using Motor
Schemas which investigates motion and runs away if approached. 89

3.17 A DAMN based control program to navigate a robot to investigate motion
and run away if approached. ¿e arbiter sends commands to the robot itself
based on the votes made by behaviours. 90

3.18 Diagram showing experimental test using camera light level detection to
establish the reaction time of the control system 95

LIST OF FIGURES 9

3.19 Process network of the occam-pi case study robot program including its inter-
action with �rmware processes. 99

4.1 An early �owchart expressing a computer program, from Goldstine and von
Neumann [GvN63] . 103

4.2 A variety of process network diagram styles used in the Concurrency Re-
search Group at the University of Kent and in the wider process-oriented
programming community, from [Sam08] . 105

4.3 Visual representations of processes . 106

4.4 Visual representations for channels . 106

4.5 ¿e Logo Blocks environment with a program constructed, from [MIT02] 110

4.6 A control program designed in the LabView-based RoboLab environment,
from [ECR00] . 111

4.7 A sample program in the Microso Visual Programming language, showing
its visual representation for variable assignment, conditional and hardware
interface, from [Mic08] . 113

4.8 TRAPPER’s Designtool showing its connection points outside of the canvas
for interfacing to external components, from [SSKF95] 115

4.9 A gCSP session showing sequential and parallel composition of processes,
along with the hierarchical browser, from [BGL05] 116

4.10 ¿emain window of GATOR, from [ST04] 118

4.11 ¿e Live occam Visual Environment, LOVE, from [Sam06] 119

4.12 A mock-up of the POPed user interface . 123

4.13 Connection points and their type highlighting mechanism 126

(a) Possible connection points, no selection made 126

(b) Connection point selected, possible connections highlighted 126

4.14 ¿e information panel with a process instance selected on the canvas 127

4.15 A process network for a Braitenberg vehicle which appears to ‘avoid’ light . 129

10 LIST OF FIGURES

4.16 A small robot control program built with the subsumption architecture which
uses two types of sensor input and three behaviours to manoeuvre around a
space . 130

4.17 ¿e user interface of POPed , with a number of processes connected by
channels . 133

4.18 User interface for setting the parameters of a process in POPed 134

4.19 Processes in the ‘Utility’ group, including Welch’s Legoland components and
a number of helper processes. 137

4.20 Hardware interface processes for the LEGOMindstorms RCX 138

4.21 Hardware interface toolbox processes for the Surveyor SRV-1 140

4.22 Visual representations of generic suppressor and inhibitor primitives for
use in implementing subsumption architectures. 140

4.23 A compositional line following program for the Mindstorms RCX consisting
of processes from the RCX hardware interface and utility toolbox groups. . 142

4.24 A compositional program for the Surveyor SRV-1 which turns on the laser
pointer on a particular side of the robot if the brightness on that side exceeds
a threshold and outputs camera frames to a host computer. 143

4.25 An incomplete process network before and a er propagation of a concrete
type . 144

5.1 Two examples of process-oriented programs designed to illustrate deadlock. 151

5.2 GRAIL displaying a network of three parallel processes connected by channels,
from Stepney [Ste87] . 156

5.3 ¿e POPExplorer Environment, From Jacobsen [Jac06] 158

5.4 A producer and consumer process being run in parallel, where the current
execution position is line 5 of the producer process 159

5.5 Inspecting the current value of a variable inside a process being executed . 160

5.6 Inspecting the state of a channel, with the last 5 communicated values and the
current value on the channel waiting to be read highlighted 161

5.7 ¿e TC1 trace visualisation tool replaying a trace of commstime, an occam-pi

communication benchmarking program. 165

LIST OF FIGURES 11

5.8 ¿eTC1 trace visualisation tool replaying a trace of commstime a er the delta
process has begun to fork parallel subprocesses 166

5.9 Channel representations and the highlight used to indicate blocking states in
the TC1 visualisation tool . 167

5.10 ¿e TC1 visualisation tool showing a program intentionally designed to dead-
lock and informing the user of the deadlock condition. 168

12 LIST OF FIGURES

List of Listings

2.1 An imperative robot program with two interleaved tasks, written in C . . . 37

2.2 A process-oriented robot program with two tasks written in occam-pi . . . 39

3.1 An occam-pi implementation of suppress.int, a process which acts as a
suppressor for channels of integers . 76

3.2 An occam-pi implementation of inhibit.int, a process which acts as an
inhibitor on channels of integers . 77

3.3 An occam-pi implementation of the vector sum primitive which allows for
the control of motion in a 2D plane. 88

3.4 ¿e mainmethod of the imperative robot program implementation, contain-
ing the control logic, and the two functions used to detect environmental
conditions: wait_for_dark and wait_for_light. 97

3.5 Top-level process de�nition for the occam-pi process-oriented implementa-
tion of the case study program . 98

4.1 Construction of the process network for the example simple robotics program
in occam-pi . 132

4.2 A process block de�nition for the POPed visual environment, providing an id
process implemented in occam-pi and using generic (ANY) type speci�cation 135

4.3 Generic de�nition of a delta process. 145

4.4 Generated specialisation of the delta process when connected to an input or
output carrying integers. 145

5.1 A sample of state records from the lightweight trace of sortpump 164

14 LIST OF LISTINGS

Chapter 1

Introduction

Process-oriented Programming is amodel of concurrent programming based onHoare’s Com-
municating Sequential Processes [Hoa85]. In this thesis, the de�nition of process-oriented
programming is in�uenced directly by Inmos’ occam programming language [INM84]. Con-
current programming languages modelled on Hoare’s CSP predate occam, a notable example
being Brinch Hansen’s Concurrent Pascal [BH75]. Despite this, the directness of the occam
implementation of the CSPmodel makes it an exemplar for practical application of the model
to programming.

In the process-oriented model problems are decomposed into networks of concurrently
executing processes communicating with each other via message passing over channels.
Processes may encapsulate serial program logic, parallel compositions of other processes or
any combination of the two. Channels provide a mechanism for processes to communicate
data, by reading orwritingmessages. Processes blockwaiting to read fromorwrite to a channel,
until the other party in the communication is ready to complete the action, producing a
synchronisation event.

¿ework presented here applies these process-oriented programming concepts in the domain
of robot control. At its simplest, a robot is a machine capable of autonomously completing
a task. While it is possible for a robot to have no sensors, no processing capability or no
actuators, all of these are typically found on a robot and creating programs which encompass
them to sense, plan and act forms the basis of robot control. A robot uses its sensors to gather
input data about conditions in the world (sense) and computes this input (plan) into activity
of the robot via mechanical e�ectors (act), changing the robot’s state and consequently the
state of the world.

16 CHAPTER 1. INTRODUCTION

Robot control is an inherently concurrent problem. Robots interact with the world, where
events are independent and can happen simultaneously — the world is inherently parallel.
As humans, our experience of the world is also parallel; we see, hear, taste, smell and feel
at the same time, our sensory stimuli being simultaneously processed by the brain into our
comprehension of the world around us. Given this human relation to the world, it is natural
to express the behaviour and decision making of a robot in terms of concurrent activity,
rather than as a series of sequential or interleaved actions. While this may be obvious to
state, we can only take it as a “given”, when expressing control logic in a process-oriented
programming language designed for the e�ective use of concurrency.

It is important to distinguish between concurrency and parallelism. Concurrency is a structur-
ing tool, allowing the expression of tasks which should happen independently of one-another
and the communication or synchronisation points between them. Parallelism is a perform-
ance tool, extracting program execution speedups from the concurrency of a program by
executing code simultaneously instead of serially where more than one processing resource
is available. Concurrency is valuable even in the absence of parallelism, as it allows more
straightforward expression of programs which solve naturally concurrent problems.

¿e inherently concurrent nature of robot control means application of the process-oriented
programmingmodel reduces the level of abstraction between the behaviour of a robot control
system and the expression of that system in so ware. When introducing and motivating
the use of process-oriented programming, robotics presents an application area in which
the challenges of the problem domain present opportunities to employ the strengths of the
programming model.

Green and Petre de�ne a cognitive dimension in the use of visual programming called
closeness of mapping: given that programming requires mapping between a problem domain
and a program world, the closer a program world is to the problem world, the easier solving
the problem should be [GP96]. ¿is thesis proposes that a closeness of mapping exists
between process-oriented programming and robotic control; handling concurrency in a
robot control program is eased by the availability of language primitives and a programming
model inherently designed for concurrency.

Diagrams are an inherent and important part of the process-oriented model; the practice
of process-oriented programmers is to represent program designs consisting of many con-
currently executing processes using box and arrow diagrams. ¿ese diagrams do not deal
with every small detail of the sequential logic of the program, rather they are a high level
decomposition of the task. Process-oriented programmers o en generate these diagrams

1.1. ORIGINS 17

as part of their work�ow; while designing the program, decomposing the problem into a
set of communicating processes; and when debugging, annotating the program with state.
¿e �rst interaction with the model of undergraduate students learning process-oriented
programming at the University of Kent is labelling such a diagram based on a corresponding
piece of program code.

Visual programming is the creation of programs through manipulation of graphical repres-
entations of program elements. Whilst process-oriented languages like occam are not visual,
using textual syntax to represent program code, the role of diagrams in representing the
high-level structure of process-oriented programs is a natural area in which to apply visual
programming techniques. Visual representation draws, builds on and reinforces elements of
the design process and mental model of process-oriented programs. It also gives program-
mers a di�erent perspective on the structure of their program — the program code they
write and the diagrams that correlate to it are two perspectives on the same construction.

Visual representations elucidate program structure for design, composing and connecting
process networks via diagram, and for debugging at run-time, drawing process network
diagrams annotated with program state. ¿e use of these representations in so ware tools
presented in thesis captures a practice of process-oriented programming for over twenty
years — the use of process network diagrams as a model for designing and reasoning about
process-oriented programs. ¿is thesis proposes that closeness of mapping exists between
process-oriented programming and visual representations of process-oriented programs;
mapping between graph-like diagrams and connected networks of processes.

1.1 Origins

¿is work originates in the author’s initial exposure to process-oriented programming as a
�rst-year undergraduate student seven years ago, writing small robot programs in occam-

pi on the Lego Mindstorms RCX via Jacobsen and Jadud’s original exploratory work on a
runtime environment [JJ04].¿e port was experimental and had rough edges; with extremely
limited space for program memory, hardware interfaces grew organically as new capabilities
were required and errors would occur outside of the robot program, both in the runtime and
hardware interface code. ¿e ability to express robot control via communicating concurrent
processes allows the structure of the so ware to directly re�ect the multiple concurrent
behaviours expected of the control system. Robots inherently require concurrent behaviours,

18 CHAPTER 1. INTRODUCTION

and having �rst class support for concurrency in the programming language brings the
expression of the solution closer to problem domain.

Whilst later formal training in process-oriented programming as part of the course formed
a solid foundation in the use of occam-pi and concurrent so ware design, the original
motivation captured in the �rst few steps taken on the Mindstorms RCX was formative. ¿e
research direction of the author, through publications, and the content of this thesis �ow
directly from this �rst experience. Each element of this thesis addresses a part of that original
experience and aims to extend the �eld, creating a richer set of knowledge, experience and
principles for conducting process-oriented robotics.

An educational theme runs throughout this thesis and the work presented at a micro scale;
a desire to provide motivation, tools and principles for the e�ective application of process-
oriented concurrency. Growing availability of hardware parallelism heightens the importance
to students of being capable and experienced in building concurrent systems. Principles and
practices introduced via the process-oriented model of programming are generally applicable
and aid in reasoning about design and implementation of concurrent systems.

¿e author has accumulated several hundred hours experience of teaching programming
at the University of Kent with both object-oriented and process-oriented paradigms. ¿e
author’s experience of teaching object-oriented programming is with the Java programming
language in the BlueJ environment [KQPR03]. ¿e use of graphical representations in BlueJ
to convey the program structure and its facilities for inspecting running program components
have been formative to the author in designing tools which better support the use of process-
oriented programming.

1.2 Relation to the Author’s Papers

¿is thesis presents contributions and material which have been previously published in
peer-reviewed papers by the author, in collaboration with a number of co-authors. ¿ese
consist of eight conference papers, six of which have primary authorship or contribution by
the author of this thesis and two to which the author has made smaller contributions. ¿e
relation of these publications to this thesis is described below, specifying the contributions of
and role of the author of this thesis in each.

¿is initial research interest of the author was driven by a desire to replicate existing robotic
architectures and programming strategies in the process-oriented model, to replace ad-hoc

1.2. RELATION TO THE AUTHOR’S PAPERS 19

process decompositions with tried and tested techniques.Mobile Robot Control: ¿e Sub-
sumption Architecture and occam-pi by Simpson, Jacobsen and Jadud, [SJJ06], describes the
implementation of Brooks’ Subsumption Architecture in occam-pi and the subsequent imple-
mentation of a bump and wander program using the approach. ¿e author co-conceived the
idea with Jacobsen and Jadud, and subsequently completed the research and implementation
of both the subsumption architecture components and case study program. ¿is work is
detailed in Section 3.3.1.

Work on this initial architecture paper inspired the author to improve platform support
on the Mindstorms RCX, as the original port le little space resources for larger, more
complex programs. ¿e result, a minimal port of the Transterpreter occam-pi run-time with
an emphasis on allowing user programs maximal use of the RCX’s limited resources, along
with a process-oriented hardware interface was reported in A Native Transterpreter for the
LEGO Mindstorms RCX by Simpson, Jacobsen and Jadud [SJJ07]. ¿is work is partially
detailed in Section 3.1.5, covering the process-oriented API to the robot hardware, sensors
and actuators. ¿e author completed the port, interface design and implementation with
advice and input from Jacobsen and Jadud based on their original port to the RCX.

Given this enhanced RCX port, an opportunity arose to make use of it in a workshop for
professional embedded so ware developers presented in Vienna, Austria. ¿is workshop
was co-presented by Jadud, Jacobsen, Dimmich and the author, introducing process-oriented
programming to these developers through a structured course, applying of patterns and
principles from occam-pi programming to robot control the RCX. Patterns for Programming
in Parallel, Pedagogically by Jadud, Simpson and Jacobsen [JSJ08] reviews this workshop.
¿e author’s contribution is to the teaching material and the subsequent documentation
and analysis of the workshop as a paper. ¿is work is detailed in Section 3.5, discussing the
application of patterns which originated in process-oriented programming to robotics.

In both the subsumption architectures work and the Mindstorms RCX port, use of dia-
grams was identi�ed as future work; subsumption architectures are designed using network
diagrams showing the key interactions, while the Mindstorms RCX ships with a graphical
language in its standard incarnation. Building a visual tool for manipulating these process-
oriented robotics programs, at a compositional level, represents a logical intersection of these
concepts.

¿e design and rationale of a visual environment for creating robot programs is presented in
Visual Process-oriented Programming for Robotics by Simpson and Jacobsen [SJ08]. Advised
by Jacobsen, due to his previous experiences in the area with POPExplorer [Jac06], the author

20 CHAPTER 1. INTRODUCTION

investigated a number of previous tools to establish a working feature set and initial design.
¿is work forms the basis of Chapter 4.

Whilst working on a visual environment for creating programs the adaptation of such visual-
isations to represent the execution state of process-oriented programs became an additional
research avenue. To facilitate this work, Ritson added a debugging infrastructure to the
Transterpreter virtual machine and end-user tool, TC1 to demonstrate its capabilities. Virtual
Machine-based Debugging for occam-pi by Ritson and Simpson[RS08] presents this tool, TC1,
and the debugging infrastructure created to enable run-time monitoring of programs. ¿e
author contributed initial concepts, design and literature reviewmaterial for this work, which
is presented in chapter 5.

Safe Parallelism for Robotic Control by Jadud, Jacobsen, Ritson and Simpson [JJRS08] presents
details of a port of the Transterpreter Virtual Machine to the Surveyor SRV-1 and its applica-
tion in a �rst course in robotics at Olin College. ¿e author contributed API and �rmware
design for the Surveyor port, and this work is discussed in Chapter 3.

Expanding on the previous work done to implement subsumption architectures in occam-pi,
Toward Process Architectures for Behavioural Robotics by Simpson and Ritson [SR09] explores
the implementation of primitives and principles for use of a number of seminal behavioural
control architectures. ¿e author conceived this work, collaborating with Ritson on the
primitive implementations, which are presented in Section 3.3.

Process-Oriented Subsumption Architectures in Swarm Robotic Systems by Posso, Sampson,
Simpson and Timmis [PSST11] presents the implementation of a process-oriented subsump-
tion architecture to perform a garbage collection task. ¿e control program is designed to
run as part of a foraging swarm, with many robots operating with the same program.¿e
author of this thesis had a minor role in this publication, advising on implementation of the
subsumption architecture on the robot and adding depth to the writeup. ¿is work is also
part of the process-oriented subsumption architecture research conducted by Neeson, Posso
and Timmis at the University of York originating from the author’s original publication and
the work presented in this thesis, this line of research is discussed further in Section 1.3.

1.3 Impact

Publishedwork detailed in Section 1.2 has demonstrated research impact, having been cited in
other studies and reviews. ¿is impact is both conceptual, contributing to the understanding

1.3. IMPACT 21

of the �eld and instrumental, documenting methods and principles for conducting similar
works.

Patterns for Programming in Parallel, Pedagogically has provided a data point for discussion
of models to use for teaching concurrency patterns in Computer Science. Process-oriented
programs demonstrate a model without shared state focused on communication and, when
written in occam-pi, a language designed solely to clarify the expression of such programs.
¿is model can be presented as contrast to pragmatic threads and locks approaches and
conventional programming with shared state [Fek09, Bun09]. ¿e signi�cance of simpli�ed,
process-oriented patterns in student’s interaction with the message passing model is noted
by Gross, designing a course across a broad set of Java concurrency libraries, speci�cally the
use of process-oriented programming patterns in constructing distributed systems using
MPI [Gro11].

¿ework and principles described inMobile Robot Control:¿e Subsumption Architecture and
occam-pi have been directly extended by two MSc. projects at the University of York. Neeson
reimplemented an existing swarming subsumption architecture, previously implemented
in C++, using occam-pi to evaluate the use of the language for robotics, concluding that
the occam-pi approach provided greater �exibility, portability and a less abstract expres-
sion of the architecture [Nee08]. Posso examined the suitability of occam-pi subsumption
architectures to solving complex robot control problems and e�ects of scaling the approach
to larger problems, concluding that issues found when scaling seemed to be inherent to
subsumption architectures and that occam-pi provides “an excellent platform for concurrent
control” [Pos09].

¿e research direction of this thesis has a symbiosis with teaching of the “ConcurrencyDesign
and Practice” undergraduate module at the University of Kent. Having taught this course
for the last �ve years, the author of this thesis has introduced robotics elements building on
previous e�orts by Jacobsen and Jadud. [JJ05]. ¿is work takes the form of an additional
assessment called Life on Mars, designed to allow students to practice using concurrency in
the context of robot control. ¿is assessment has run as part of the course since 2009 and is
described fully in Section 2.6.3.

Jacobsen, Jadud and Sampson have also built on the principles established for introducing
process-oriented programming, creating a so ware library and book introducing occam-pi

and electronics via the Arduino embedded board [JJS10]. ¿e Arduino is an inexpensive and
widely available embedded system based on the Atmel AVR micro-controller, designed to
provide an accessible platform for electronics projects.

22 CHAPTER 1. INTRODUCTION

1.4 Contributions

Research questions addressed in this thesis include the following. Can process-oriented
design and implementation techniques reduce the level of abstraction, producing a closeness
of mapping between the problem domain of robot control and its expression in control
so ware? Can a compositional visual program design tool allow the creation of useful
process-oriented systems? Can the dynamic evolution of system state in a running program
be captured in visual representations of process-oriented systems which allow reasoning
about program behaviour?

In investigating these research questions, this thesis makes the following contributions:

1. Process-oriented robotics architectures. ¿is thesis presents process-oriented re-
design and re-implementation of seminal behavioural control architectures and hard-
ware interfaces for robotics. ¿is thesis also presents fundamental patterns of process-
oriented programming as applied to robot control. ¿is work is presented with the aim
of demonstrating a closeness of mapping between the problem of robot control and the
use of process-oriented concurrency which eases the expression and implementation of
robot control systems. Evidence is presented that shows these approaches are practical,
maintaining response times when providing concurrent abstractions (Chapter 3).

2. POPed—Acompositional, visual process-orientedprogramdesign tool.¿is thesis
presents the design and implementation of a visual programming tool designed purely
for process composition. Evidence is presented that such a tool can use the visual forms
employed for program design in a purely compositional way along with a prede�ned
set of components to generate programs (Chapter 4).

3. Amethodology and tool for state visualisation (introspection) of process-oriented
programs.¿is thesis presents the design and implementation of a tool for the visu-
alisation of the run-time state of process-oriented programs in occam-pi. Evidence
is presented for the application of this tool to the demonstration and explanation of
designs which cause concurrency errors in process-oriented programs. ¿is thesis
demonstrates that the visualisations used to design programs may e�ectively be annot-
ated with state in order to reason about run-time behaviour (Chapter 5).

1.5. STRUCTURE 23

1.5 Structure

Chapter 2Motivation and Background sets the scene for this work, covering the background
and other research which has informed the content of this thesis. Chapter 3 Robotics presents
the contributions of this thesis relating to process-oriented robot architectures. ¿is begins
with a number of existing robot architectures implemented using process-oriented concur-
rency in occam-pi to form primitives and principles for process-oriented robotics. Chapter 4A
Demonstrator Environment presents the contributions of this thesis relating to the design and
implementation of a demonstrator tool for visually composing process-oriented programs.
Chapter 5 Introspection presents ideas for and the design of an introspection tool for examin-
ing running occam-pi programs, including a comparison to the eventually implemented tool.
Chapter 6 Conclusions and Further Work contains conclusions over the contributions made
and experimental work presented in this thesis. ¿is chapter also details the potential for
further explorations of the ideas and experiments contained within this thesis, based on the
conclusions made.

24 CHAPTER 1. INTRODUCTION

Chapter 2

Motivation and Background

¿e work reported in this thesis originates from a desire to expand and explore process-
oriented robotics from an educational context, as detailed in Section 1.1. ¿e motivations for
this work are numerous and overlap each other along the research direction; the growth of
hardware parallelism, the sympathy between process-oriented programming and robotics, the
pedagogy of robotics for computer science education and the pedagogy of process-oriented
programming itself combine to provide a fertile area for research. ¿is chapter builds the
landscape; from advances in multi-core hardware through process-oriented programming
and its embodiment in occam-pi to robotics and the pedagogy of the two both in isolation
and combination.

2.1 Trends toward Multi-core and Many-core

¿esigni�cance of anywork involving the application of concurrent programming has a direct
relation to widespread and growing hardware parallelism; given parallel systems, capable of
executing tasks simultaneously, expressing the concurrency in a program is critical to making
e�ective use of the available performance. Advances in computer technology have turned
away from increasing CPU clock frequency speed and straight-line execution performance
towards adding cores and increased hardware parallelism [Sut05]; programmers can no
longer rely on the advance of technology to speed up the execution of sequential programs.
¿e need for concurrency and programmers trained in its practice has never been greater,
and it is essential that programmers are prepared with approaches, tools and experience for
building and debugging highly concurrent programs. To this end, the ACM/IEEE Computer

26 CHAPTER 2. MOTIVATION AND BACKGROUND

Society Task Force on Computing Curricula’s Curriculum 2013 identi�es parallelism as a
key knowledge area to be addressed in computer science curricula, referencing the “vastly
increased importance of parallel and distributed computing” [oCC13].

Moore’s law, o en mischaracterised as o�ering a doubling of CPU clock frequency, predicts
a doubling in transistor count every 18 months [Moo65]. Historically this rise in transistor
count facilitated increasing straight-line execution speed and processor clock frequencies,
meaning single threaded systems gained performance over time. From 2006 Intel moved
from doubling clock frequency to adding cores to increase performance, citing the di�culties
with transistor heat generation at ever decreasing size and increasing frequency [Int04].
As an indication of its future direction, Intel demonstrated the Tera-scale architecture, a
processor with eighty cores, to emphasise the need for developers to embrace and develop
models that scale with this growth to many-core.

¿e trend towardmulti-core around this period is not limited to Intel and desktop computing;
Sony, Toshiba and IBM formed a partnership which yielded the Cell Broadband Engine
(Cell BE) in 2005. ¿e Cell BE is a on-chip combination of a general purpose Power CPU
core and eight specialised, highly vectorised, stream processing cores known as Synergistic
Processing Elements (SPEs) able to communicatewith the Power core.¿eCell’s heterogenous
architecturemakes it di�cult to extract performance from, programmersmust make e�ective
use of the available parallelism as the main horsepower of the system is in the multiple SPEs.
¿e Cell BE can be commonly found in homes today inside the Sony Playstation 3 console; its
major competitor, the Microso Xbox 360, uses three 3.2GHz Power architecture CPU cores
similar to the Cell’s main core. In comparison to the Cell architecture in the Playstation 3, the
Xbox 360’s three general purpose core architecture provides high performance of sequential
code, making it more suitable for a programmer to extract performance from using coarse-
grained concurrency techniques [Arc11]. ¿e seven specialised vector processing units of
the PS3 require an approach which handles mass parallelism and the heterogeneity of the
cores. Dimmich discusses and investigates allowing the exploitation of the architecture and
performance of the Cell BE via process-oriented programming in [Dim09].

With the progression of this shi in processor performance scaling, multi-core architectures
have become prevalent, increasingly moving into embedded systems. Embedded systems are
particularly relevant for robotics applications, and these are also moving toward multi-core,
with processors such as the ARM Cortex-A9 [ARM12] available up to quad-core in 2007 and
the quad-core XMOS xCORE XS1 [XMO12] in 2008. More recently many-core embedded
systems have started to become available such as the Parallela, a board containing a Dual-

2.1. TRENDS TOWARDMULTI-CORE ANDMANY-CORE 27

core ARM A9 processor alongside a 16 or 64 RISC core Epiphany co-processor, designed to
use just 5 watts of power [Par13]. ¿ese heterogeneous architectures encourage approaches
which facilitate distribute processing; moving program components between processors and
processor architectures, without requiring access to shared memory.

Robot platforms speci�cally present a challenge for the exploitation of parallelism as their
architectures can feature multiple heterogeneous processors and the requirement for distrib-
uted processing between them. ¿e ActivMedia Pioneer 3-DX (further discussed in section
3.1.4) presents an example of such an architecture. ¿e Pioneer 3-DX, when equipped in its
laser mapping and navigation speci�cation, contains three co-existing systems: an analogue
frame grabber connected to a video camera, an embedded “motion controller” board to
interface with sensors and actuators, and an embedded PC104 board acting as an on-board
PC host to which the two other systems are interfaced Similarly, the LEGOMindstorms NXT
contains both amain 32-bit ARMCPU and an 8-bit AVR co-processor which performs power
management and handles reading from the sensors and buttons on the brick [¿e06]. Having
multiple, distributed systems involved in control introduces problems of synchronisation,
communication and concurrency; the control program must be able to wait for input from a
speci�c subsystem without becoming unresponsive to input from other subsystems.

¿e ability to better express the concurrency in a program leads directly to an improvement
in parallelism; if the user can express to the machine exactly which sections of the code may
execute independently, this information can be used to inform parallel execution by the
run-time system. As the availability of parallel execution hardware increases, the parallel
speedup available is dictated by Amdahl’s Law [Amd67]: the speedup available is limited by
the number of sequential sections in the program.

¿e granularity of expression for concurrency in a model and programming language directly
a�ects the potential for the runtime environment to execute the program in parallel. As
hardware parallelismmoves frommulti-core towardmany-core, e�ective use and exploitation
of performance will require moving from fewer, more heavyweight concurrency primitives
and locks on shared data to many lightweight primitives, avoiding shared data entirely.

Highly concurrent systems require approaches beyond threads and locks; parallel shared
memory systems place the burden on the programmer to ensure synchronisation of access
to data. ¿is burden is the source of common concurrency errors, explained further in
Section 5.2. Increases in parallelism mean this synchronisation must be �ner-grained to
extract full performance from the hardware. It is important to give programmers tools,
approaches and mental models to build systems that fully exploit highly concurrent and

28 CHAPTER 2. MOTIVATION AND BACKGROUND

non-heterogenous architectures. Models which enable use of concurrency, including process-
oriented programming, enable the creation of systems which make e�ective performance
gains on many-core systems.

2.2 Process-oriented Programming

Process-oriented programs are composed of networks of concurrently executing processes,
communicating over channels via synchronous message passing. ¿e process-oriented
paradigm is derived from Hoare’s Communicating Sequential Processes (CSP) process
algebra[Hoa85]. Process-oriented programming provides a model for writing concurrent pro-
grams using a small number of primitives: concurrently running processes, communication
channels and synchronous communication over those channels. Process-oriented programs
are typically concurrent and those that are concurrent are able to be parallel when executed
on multi-core hardware with a language run-time supporting hardware parallelism.

2.2.1 Why occam-pi for Process-oriented Programming?

Use of the process-oriented paradigm does not imply the use of a speci�c programming
language. ¿e use of a language speci�cally created for its application, such as occam-pi,
brings bene�ts in clarity of expression and execution performance. ¿e work presented in
this thesis uses occam-pi for building process-oriented systems, as it permits the most direct
expression of process-oriented primitives; primitives for channel communication and parallel
execution are �rst-class syntax elements.When teaching concurrency this direct expression of
primitives allows students to focus on the properties of the programming model, abstracting
their programs into concurrently executing, communicating components. Avoiding arcane
library-based syntaxes or interactions between programming models when introducing
concurrency provides a focus on the concepts, separating them from the implementation
details and constraints of using message-passing concurrency as a library.

¿e Transterpreter virtual machine (TVM), an occam-pi run-time environment, is a signi�c-
ant factor in choosing the language for the application of process-oriented programming
to robotics. ¿e TVM, originally conceived for the purpose of allowing the application of
occam-pi on a variety of platforms, is written in a highly portable subset of C and has been
used to run occam-pi programs on systems from LEGOMindstorms RCX (A H8 16MHz

2.2. PROCESS-ORIENTED PROGRAMMING 29

CPU and 16K of RAM) all the way up to multi-processor desktop PC’s (2.4GHz dual core
and 4GB of RAM). ¿e Transterpreter is discussed further in Section 2.2.5.

Erlang is a concurrent programming language designed by Ericsson, originally designed for
building real-time control systems for telephone routing [AVWW93]. Erlang implements the
Actor model of concurrency [HBS73] where actors (processes) communicate using messages
but do not synchronise on the communication, unlike in CSP. Asynchrony of communication
has implications for memory usage; messages between processes are placed in a mailbox
which grows until the process reads the message. Erlang’s runtime system is designed for
larger embedded systems, requiring tens of megabytes of memory for a minimal instance —
orders of magnitude larger than some of the target platforms for robotics work, as detailed
in Section 3.1.

Google’s Go programming language [Goo12] contains all of the necessary primitives for
process-oriented programming, although as it is designed to support a number of models, its
syntax is more complex and some process-oriented semantics (such as fork and join) must
be manually speci�ed.

Support for process-oriented primitives may be added to other programming languages
via library, such libraries exist for half of the top ten most popular programming languages
in use today [TIO12], including Java (JCSP [WB08]), Python (PyCSP [ABV07]) and C++
(C++CSP2 [Bro07]). However, as Boehm states in [Boe05], implementations of concurrency
primitives as libraries o�er signi�cantly weaker guarantees of correctness. Indeed, in these
languages processes must o en be modelled as objects, leading to awkward syntaxes being
needed and there are no checks on the usage of shared memory.

¿e occam-pi language has the ability to check parallel usage and prevent compilation of
programs which use unsafe access patterns on shared memory, which would potentially
introduce race hazards or data corruption. ¿e channel communication model moves ex-
clusive access to data between processes, resulting in data access patterns which protect data
integrity (an issue discussed more fully in Section 5.2). ¿e need for safe handling of shared
data immediately arises in robotics from the need to share access to data from sensory input
and the control of actuators. ¿e use of process-oriented programming allows streams of
input to be duplicated and output to be integrated and uni�ed to the single streams expected
at the hardware level. ¿ese techniques provide a foundation for building selection and
behavioural control systems on top of, the subject of Section 3.3 of this thesis.

30 CHAPTER 2. MOTIVATION AND BACKGROUND

2.2.2 occam

occam was a parallel programming language developed by INMOS Ltd in symbiosis with the
Transputer microprocessor [SGS95]. occam was designed to facilitate concise expressions of
concurrent programs, with language primitives for parallel composition of processes, creation
of channels and communication via message passing along channels. In the introduction to
the initial speci�cation of occamMay states that it is “intended to be the smallest language
which is adequate for its purpose” [May83]. Hence the name occam, from Occam’s Razor, a
principle of simplifying until further simpli�cation sacri�ces expression.

occam incorporates concepts from May’s Experimental Programming Language [MTWS78]
and Hoare’s Communicating Sequential Processes [Hoa85]. occam di�ers from CSP in allow-
ing a process to be composed from a sub-network of processes running in parallel. occamwas
designed to allow direct expression of both the concurrency of a component running on a
single processor and the parallelism of a component running across a network of processors.

¿e Transputer microprocessor, for which occam was intended to be the programming
language of choice, was designed to enable the construction of large parallel computers and
features both high and low level elements in its design to support concurrency. At the low
level, Transputers contain instructions to support channel communication (in, out) and
managing parallel processes (startp, endp). At the high level, a set of four high speed serial
links were included in the design, to allow Transputers to be networked to create much larger
systems. occam programs could be written for and run on networks of Transputers, processes
being distributed between Transputer cores and channels being multiplexed along serial
links as speci�ed by explicit placement instructions in the program code. Typical of occam’s
simplicity, syntax for the network distribution of processes is built directly into the language,
the PLACED language keyword allowing the speci�cation of where a particular process should
be located.

As processes may be distributed across a network of Transputers, sharing data between
processes is achieved via channel communications. All e�ects that processes in occam have
are visible through their interface to the rest of the program; there is no global state beyond
that of the hardware.¿is lack of global statemeans that occam-pi processes are compositional;
processes encapsulate their state, have no side e�ects and behave as a ‘black box’ with a de�ned
interface to the environment.

2.2. PROCESS-ORIENTED PROGRAMMING 31

2.2.3 occam from Transputers to KRoC

¿rough a combination of commercial factors and the increasing speeds of traditional CPUs
along with the failure of INMOS (then SGS¿ompson) to ship improved Transputers, the
architecture fell out of popular use in the early Nineties. ¿e tight relationship between
occam and the Transputer, which had led its uptake in the late Eighties made the continued
use of occam di�cult, as the available compilers were only able to generate programs in
Transputer byte-code, to be run on Transputer systems. occam and its programming model
was recognised as valuable by the Transputer community, and it was desired to be able to
continue using occam to program parallel systems for commodity workstations.

¿e Southampton Portable occam Compiler (SPoC) was an early attempt at permitting the
use of occam for writing programs on standard Unix workstations [DHWN94]. SPoC would
translate a standard occam program into ANSI C code along with a set of functions and
macros comprising a run-time system. A standard C compiler was then used to produce
a binary for the target architecture. ¿is approach meant that the generated C code was
responsible for scheduling, there was no external scheduler. Each process o�ered a single
method which would execute it, and these were executed in turn; the design of SPoC did
not allow exploitation of hardware parallelism. Some optimisations were done at the occam
source level, transforming the program before its translation into C, to ease the mapping
between the two programming languages.

Subsequent to the development of SPoC, the occam For All (OFA) project was formed by
the University of Kent and the University of Keele, motivated by a fear “that the engineering
and commercial bene�ts previously enjoyed through the use of occam on transputer-based
platforms will be denied to them in the future unless the language is ‘opened’ to the wider
parallel computing community” [W+94]. ¿e Kent Retargetable occam Compiler (KRoC)
started life as a combination of deliverables from the OFA project; a native code translator
for the Intel x86 architecture (tranpc) [Poo96], a run-time kernel (CCSP) to support con-
currency in C and occam [Moo99], improvements to the INMOS occam compiler (occ21)
and a wrapper script to drive the aforementioned components as a toolchain.

2.2.4 occam-pi

Welch and Barnes extended the occam language with concepts of mobility and network
recon�guration taken from Milner’s pi-calculus to create the language known as occam-

32 CHAPTER 2. MOTIVATION AND BACKGROUND

pi [WB05].¿e intention of occam-pi is tomodernise the occam language, adapting it towards
the modern environment of networked, powerful desktop machines with plentiful memory.
occam-pi introduces more than just mobility and dynamism, including a number of features
consistent with its goal of modernising occam for the desktop; a foreign function interface for
calling C code, shared channels, mobile data and channel bundles. occam-pi as a language is
a moving target, as additional language and run-time features are speci�ed and implemented
to support concurrency research at the University of Kent. A number of occam Enhancement
Proposals (OEP’s) have been created de�ning additional features that may be added to the
language in future [Wel12].

2.2.5 The Transterpreter Virtual Machine

Motivated by a desire to use the occam-pi language for teaching on small robotics platforms,
Jacobsen and Jadud encountered several impediments to its use in such an environment:
the complexity of the KRoC backend, the need to port the CCSP runtime library to new
architectures and the size of binaries generated by the toolchain [JJ04]. To enable these uses
for occam-pi Jacobsen created the Transterpreter virtual machine, a Transputer Interpreter,
capable of running Transputer byte-code �les generated by the existingKRoC occ21 compiler.
¿e Transterpreter is written in ANSI C so as to be highly portable [Jac06] and has been
ported to many architectures: Intel x86, PowerPC, ARM, MIPS, Black�n, Renesas H8/300
and more. ¿is high degree of portability has been used to enable the use of occam-pi on a
number of robotics platforms, among them theActivMedia Pioneer 3-DX, LEGOMindstorms
RCX and Surveyor SRV-1. ¿ese platforms, their runtime ports and hardware interfaces are
discussed further in Section 3.1.

2.3 Robotics

A robot is di�erentiated from a machine by autonomy, the ability to complete a task without
operator control. A typical robot consists of a number of sensors, measuring properties of the
world, some computational capability, and a number of e�ectors which can change properties
of the world. Combining the processing of sensory inputs and control of e�ectors is called
robot control. Robot control may be divided into three fundamental tasks: sense, plan and act.
¿is is not to say that these elements are equally signi�cant to a given robot control system;
many modern approaches discard the notion of a planning stage, which attempts to build

2.3. ROBOTICS 33

a detailed world model for use in reasoning, in favour of more reactive or evolved systems
using arti�cial intelligence to classify and react to the world.

2.3.1 Sense

Sensing provides data to the robot control program about the world. Robots do this via hard-
ware sensors designed to detect and measure physical properties such as light, temperature
or distance. Typically a robot will have sensors for a variety of physical properties, and may
have di�erent kinds of sensor for the same physical property to provide additional accuracy
or redundancy. For example, a robot may be �tted with ultrasonic range �nders around its
circumference in addition to a high precision laser scanner, providing two di�erent measures.
¿ere are cases where sensory input can be combined with particular mechanical actuation to
form a local feedback loop, to better control or measure the actuation. For example, a stepper
motor divides its rotation into equal steps and generates a tick signal on the completion of
each step, the stream of ticks can be used to accurately determine how far the motor has
rotated.

Handling this data input andmaking it available to the computation of the robot is a naturally
concurrent task, each sensor represents an independent �ow of input data into the program.
Providing sensory data requires reading from the sensor hardware, capturing the data into
a form usable by the rest of the program and updating it. Sensor hardware is varied, as are
interface semantics; a particular sensor may provide regular inputs at a period, where another
provides input only when the property it measures changes. Simply providing the values of
the measured environmental properties as input to the program and keeping them updated
in relation to the environment at a rate adequate for the program to behave properly can be a
signi�cant so ware engineering challenge.

More complex sensors, with local specialised processing capabilities, are becoming more
common as the level of hardware sophistication rises in robotics. Sensors with independent
processing e�ectively make robot platforms distributed systems, forcing consideration of the
interaction between the two systems: synchronisation and communication.

2.3.2 Plan

Where used, the planner of a robot control system contains the computational logic which
ensures that the robot can complete its intended task; the planning component of robot

34 CHAPTER 2. MOTIVATION AND BACKGROUND

control has been the subject of a wide number of approaches. Common to all approaches
involving planning are the need to process the input data received from sensors and control
the actuators to achieve the tasks desired of the robot. Planning may require sensor fusion,
the collation and aggregation of sensor data to build a cohesive model of the environment.
¿e robot may then use this model of the environment as a source of data from which the
robot can evaluate the correct actions to take.

Using coarse grained concurrency mechanisms, such as threads or locks, to marshal sensor
data within a program or its components immediately raises issues of synchronisation and
introduces the potential for race conditions. Sensor reads from a planning component and
updates, providing new sensory information, from the hardware interface will necessarily
share data. ¿ese kinds of concurrency error are discussed further in Section 5.2.

2.3.3 Act

¿e physical hardware which allows a robot to produce a change in the environment is
known as an e�ector. An e�ector can be as simple as an LED, or as complex as a robot arm.
¿ere are typically multiple e�ectors on a robot, a mobile robot will at minimum feature a
number of motors or servos to create motion. As with sensors, di�erent e�ectors provide
di�erent interfaces to the so ware. Some e�ectors may need to be part of a feedback loop
to be controlled accurately; for example, a stepper motor provides a tick as input to the
system for every unit of rotation it makes successfully, these ticks must be monitored to allow
the program to control the amount of movement. Whilst interacting with the hardware to
produce an accurate physical outcome from the so ware can present di�culties, resolving
con�ict between di�erent demands in the control system of a robot is a far more signi�cant
issue in robotics. If two elements of the control system desire con�icting or opposite physical
behaviour, the ability of the robot to complete either action depends on the ability to prioritise
or co-operate between the demands on the physical hardware. A set of rules or principles
for marshalling and co-ordinating behaviours is an essential part of a robotics architecture;
the ability to clearly express concurrently executing components and reason about their
interaction is a fundamental tool for composing these architectures.

2.3.4 Robotics Paradigms

¿ere are two major paradigms in robotics:

2.3. ROBOTICS 35

• ¿eHierarchical paradigm, where sensing, planning and acting take place in a pipeline,
as shown in Figure 2.1. Data about the environment from the sensors is passed into
the planner, where a model of the environment is created, decisions are made based
on this model and passed onto an actuation stage. ¿e Hierarchical paradigm was �rst
popularised by “Shakey the Robot” from SRI (then Stanford Robotics Institute) in the
1970s [Nil84].

• ¿e Behavioural paradigm, shown in Figure 2.2, omits the explicit planning and build-
ing of a world model, using the world as its own model; the robot can be considered an
agent program operating in the environment of the world. ¿is is based on the concept
that modelling the environment is a poor approximation of the actual environment,
and that making best use, or responding to input more quickly is more useful. Planning
is omitted in a behavioural control system, directly relating the behaviour of the robot
to sensed conditions in the environment.

¿e two paradigms can be combined to produce hybrid Behavioural/Hierarchical systems,
where a degree of planning is combined with a system which reacts based on sensory input.
Behavioural systems are limited in that they can only act according to the stimuli they
encounter, which can restrict the application for longer-term goal seeking and the system’s
memory of previous conditions. ¿is hybrid approach can address these problems, adding a
planning layer which can interact with the reactions to conditions to intervene as appropriate.

Sense Plan Act

Environment

Figure 2.1:¿e Hierarchical Control Paradigm, consisting of Sense, Plan, and Act primitives of robotic
control

¿e Hierarchical paradigm is rarely used in modern robotics as it depends on building
accurate world models, enacting the generated plans exactly as speci�ed and keeping the
planner in sync with actual activity of the robot. ¿ese complexities delay reactions and
produce brittle behaviour when faced with the environmental variability inherent to mobile
robotics and the world as an environment. ¿e Behavioural paradigm o�ers adaptability

36 CHAPTER 2. MOTIVATION AND BACKGROUND

Sense Act

Environment

Figure 2.2:¿e Behavioural Control Paradigm, consisting of Sense and Act primitives

in changing environments, making use of environmental complexity in combination with
simple behaviours to produce complex, emergent behaviour. ¿is approach is in�uenced
by biology and a more modern, cross-disciplinary approach to the design and control of
robots [Win12]. A second important tenet of behavioural systems is the feedback loop between
the environment and the action taken by the robot, shown in Figure 2.2; using the world as
its own representation rather than building an outdated and potentially inaccurate model
representation to plan with.

2.4 Robotics and Concurrency

Robot control is inherently concurrent; robots must interact with the world, where events are
truly parallel and independent of each other. ¿e relationship we have to the world as human
beings lends a context in which to decompose problems of robot control; we experience the
world through our senses simultaneously to processing and conscious or unconscious action.
¿e use of a programming model in which tasks of sensory input, processing and actuation
may be expressed as concurrent components, acting independently of each other and in
synchronisation, yields a closeness of mapping between the problem decomposition and our
human context.

¿e programmer is able to directly relate the streams of input and output to data paths
through the control program. Expressing the concurrency of the inputs to and outputs from
the robot directly in the structure of the program, even in the absence of concurrent physical
hardware interactions, retains this mapping. Being able to express concurrency within the
implementation language itself is a complement to the inherent concurrency of robot control
problems. ¿e data �ow aspects of the process-oriented model �t naturally to the sense, plan
and act primitives of robotic control.

2.4. ROBOTICS AND CONCURRENCY 37

void stop_on_light(){
if (read_light_sensor(PORT_1) > 50){

motor_speed(PORT_A, 0);
motor_speed(PORT_C, 0);

}
}

void beep_on_touch(){
if (read_touch_sensor(PORT_2) == 1) {

play_sound(BEEP);
}

}

int main(){
while(1){

// Light sensor task
stop_on_light();
// Touch sensor task
beep_on_touch();

}
return 0;

}

Listing 2.1: An imperative robot program with two interleaved tasks, written in C

A sequential robot program written in C for a hypothetical robot similar to the Mindstorms
RCX is presented in Listing 2.1. ¿is program has two independent tasks to achieve: if the
light sensor reads a value over 50 the robot should stop its motors, and if the touch sensor
is pressed, the robot should beep. ¿e tasks are broken into functions, as would be typical
of program structuring techniques in C. In the C implementation, the two tasks must be
interleaved explicitly into a single thread of execution; the program �rst runs the light sensor
task then runs the touch sensor task before looping. If the reading of the light sensor is a long
task, or the motor_stop operations only complete when the motor has come to a complete
stop, the touch behaviour will be a�ected; the entire program is one long sequence, even
where functions are used to break up logically di�erent tasks.

A concurrent, process-oriented implementation in occam-pi of the hypothetical program is
shown in Listing 2.2. ¿ere are similarities between the two; both programs subdivide the
two responsibilities of the programs into a functional unit each, using functions in the C
version and processes in the occam-pi version. However, in the process-oriented model, the
con�guration and interface to hardware is drawn out explicitly as a top level component rather

38 CHAPTER 2. MOTIVATION AND BACKGROUND

than being distributed as parameters to various library calls throughout the program.¿e
process-oriented version allows for the inherent concurrency of the program to be expressed;
the occam-pi PAR keyword is used, meaning the two tasks and all hardware interface processes
run concurrently with each other, each process having an individual thread of control. Given
this explicit expression of intent, the occam-pi runtime environment handles the scheduling
of and context switching between the processes; given parallel hardware, the two separate
tasks operate concurrently without any additional work to the programmer. ¿is pushes the
need for reasoning about the interleaving of multiple tasks outside the robot program and
the mental model of the programmer, unlike the C implementation which requires explicit
interleaving of the two behaviours.

A process network diagram of the concurrent robot program is shown in Figure 2.3, showing
the data-�ow through the program and the construction of the hardware interface as part of
the program. ¿e occam-pi version of the program encapsulates the hardware interactions,
reading from sensors and controlling motors, into processes at the edges of the network.
¿is encapsulation means that the task processes themselves are abstracted from hardware
interaction, handling only a single input value at a time and generating commands.

main

light.sensor
(PORT.1)

touch.sensor
(PORT.2)

motor
(PORT.A)

INT light
stop.on.light

beep.on.touch
BOOL touch

INT motor.0

speaker
INT sound

motor
(PORT.C)INT motor.1

Figure 2.3: Process network diagram for the process-oriented robot program shown in Listing 2.2

¿e inherent concurrency of the process-oriented model, of processes being able to run
independently of and in parallel to each other, makes it particularly suitable for expressing
robot control logic. In the process-oriented programming model the �ow of robotic control,
from sensory input data to control of mechanical actuation, can be re�ected directly in
the composition of the program. Decomposing the program in this way, to a network of
communicating processes which re�ect the data �ow of the program reduces the level of
abstraction and improves the closeness of mapping between the problem and its solution.

2.4. ROBOTICS AND CONCURRENCY 39

PROC stop.on.light (CHAN INT light?, CHAN INT motor.0!, motor.1!)
INT value:
WHILE TRUE
SEQ

light ? value
IF
value > 50

PAR
motor.0 ! 0
motor.1 ! 0

TRUE
SKIP

:

PROC beep.on.touch (CHAN BOOL touch?, CHAN INT sound!)
BOOL touched:
WHILE TRUE
SEQ

touch ? touched
IF
touched

sound ! SOUND.BEEP
TRUE

SKIP
:

PROC main ()
CHAN INT light, motor.0, motor.1, sound:
CHAN BOOL touch:
PAR
-- Hardware configuration
light.sensor(PORT.1, light!)
touch.sensor(PORT.2, touch!)
motor(PORT.A, motor.0?)
motor(PORT.C, motor.1?)
speaker(sound?)
-- Tasks
stop.on.light(light?, motor.0!, motor.1!)
beep.on.touch(touch?, sound!)

:

Listing 2.2: A process-oriented robot program with two tasks written in occam-pi

40 CHAPTER 2. MOTIVATION AND BACKGROUND

In the process-oriented model, processes run in isolation of each other apart from com-
municating using the interfaces de�ned by their channel connections. ¿ese processes are
compositional, meaning they may be run in parallel with each other and combined without
side e�ects, communicating via message passing over channels. ¿e independence of pro-
cesses allows separation of concerns, with good practice in process oriented programming
encouraging the creation of small, single purpose processes which are composed to produce
higher level functionality. ¿is composition facilitates the creation of larger and more com-
plex systems by combining existing well speci�ed and understood components, allowing the
programmer to focus on achieving the desired functionality and behaviour of the system
through composition. A process is essentially a ‘black box’ to the rest of the program, with no
global state and only its channel interface available to interact with it. When composing pro-
cesses, an outer process can be wrapped around the network, making the entire composition
invisible to the outer program.

¿ere is a symmetry between the physicalmakeup of the connection, by trace or wire, between
discrete electronic components to form a robot’s physical systems and the connection via
channels of discrete so ware components to form a control system for that hardware. In
recon�gurable robotics systems, the LEGO Mindstorms RCX and NXT being examples,
the modular re-connectivity of the hardware can be mirrored in the so ware components
used to construct programs. ¿is symmetry provides a closeness of mapping; bringing the
two processes closer conceptually reduces the cognitive di�culty in constructing a so ware
con�guration for a given hardware con�guration.¿is e�ect applies bidirectionally, changing
the so ware can drive changes to the hardware con�guration where recon�guration is
possible.

Embedded systems found on small robotics platforms are typically memory constrained
environments. Concurrency models such as Erlang’s actor model, whilst having the bene�ts
of separation between processes and a communication model raises the demand for memory
due to the asynchronous nature of communications. In asynchronous communication, mes-
sages are bu�ered and stored whilst the process they are intended for is ready to receive
them [AVWW93]. ¿is bu�ering leads to increased memory usage and introduces non-
determinism to the run-time memory usage of the program; at best these bu�ers may be
capped and messages discarded.

occam has been previously used for robotics, a result of the popularity of the Transputer
for use in control applications during the mid to late 1980’s [NWN88, JE88, KS84]. Early
explorations are typical of occam and Transputer use in robotics, where the parallel so ware

2.4. ROBOTICS AND CONCURRENCY 41

and hardware provided a means to speed up complex calculations such robot dynamics and
kinematics [HPR89]. Jacobsen et al. reintroduced the ability to use occam for robotics in the
absence of Transputer hardware through the creation of the Transterpreter virtual machine
runtime [JJ05].

2.4.1 A Demonstration of Process-oriented Robot Control

A robot competition run at the AAAI Spring Consortium Symposium on Robots and Robot
Venues: Resources for AI Education provides a case in point example of the application of
concurrency to robot control. ¿e competition task was set out as follows: the robot should
start in a corner and go as far as possible in the �rst 30 seconds, then return as close to home
as possible in the next 30 seconds; each team had no more than 24 hours experience of their
robot platform and an hour with the task de�nition to write the control problem. ¿e author,
Jacobsen and Jadud took part in this contest with the Surveyor SRV-1 robot (a platform
discussed in detail in Section 3.1.6). A rudimentary port of the Transterpreter to the SRV-1
was completed in a few hours prior to the competition, providing a run-time environment on
the robot for occam-pi programs. During the contest, in an hour, a subsumption architecture
was designed and implemented on the robot to complete the challenge tasks, starting with a
design session working entirely with a diagram to establish an architecture for the solution.
¿e original chalkboard diagram in shown in Figure 2.4 and a redrawn �gure of the diagram
is shown in Figure 2.5. ¿is program won the small contest, successfully traveling a distance
of 39 robot diameters in 60 seconds. ¿e methodology employed in going from problem
statement to functioning robot control program exploited the visual representations and
component isolation available due to the use of a process-oriented environment to program
the robot.

A process network diagram aids in high-level reasoning about design and architecture
of the program, decomposing the problem into a number of processes and deriving the
communication relationships between them. Use of a diagram facilitated discussion and
sharing of design ideas before a single line of code was written; the program’s design was
iterated several times before any code was written at all (as can be faintly observed in the
erasures on the chalkboard in Figure 2.4.)

Clear understanding of the relationships between components is important in subsumption
architectures, as components are able to interfere with the behaviour of each other to a�ect
the behaviour of the robot. Section 3.3.1 explains subsumption architectures in detail and the

42 CHAPTER 2. MOTIVATION AND BACKGROUND

Figure 2.4: Chalkboard design of a process-oriented subsumptive robot control system which negotiates
an environment and follows the same path home

S
1

S
30S

1fwd

avoid replay

motor.control

record

delta

rsp
req

go

rec

mtr

av rep

Figure 2.5: Process-network diagram for a subsumptive robot control system to negotiate an environment
and follow the same path home, as sketched in Figure 2.4

2.5. ROBOTICS IN COMPUTER SCIENCE EDUCATION 43

application of this model using process-oriented concurrency.

Once the components and design of the program had been formalised, the design could be
implemented as a composition of (as yet) unimplemented processes based on the diagram.
Implementing the program fully is then a process of implementing each isolated process
according to its interface to the rest of the program, rather than trying to structure the
program on an ad-hoc basis by starting with the code.

2.5 Robotics in Computer Science Education

¿ere are a number of problems and limitations inherent to the use of robots, and to a lesser
extent robotics in Computer Science education. Use of physical robots in requires space
and access; where for a typical programming assignment students may only need to sit at a
computer, a robot will need both space to be programmed and an environment in which
to be run. ¿ere are added costs; not only does a student need a computer (and potentially
specialised so ware to program the robot), they also need access to a robot platform and any
interfacing hardware to allow programs to be loaded.

Advocacy for robots as a teaching tool for Computer Science can be traced back to tools such
as Pattis’ Karel the Robot [Pat81]. Karel the Robot consists of a simulated world visualised as
a grid of cells, representing avenues running east–west and north–south, a set of walls and a
number of beepers contained inside the grid. Karel is capable of moving, turning, placing
and picking up beepers, and switching itself o�; the simple programming language used to
control Karel contains a corresponding command for each ability.

¿ere have been a number of environments designed to support robotics use in CS Education,
a major advance being Pyro (Python robotics). Pyro is a Python robotics framework which
seeks to abstract across multiple robotics platforms and allow teaching of robotics at the
undergraduate level, progressing from simple reactive control systems (those that directly
connect input stimuli to output actuation) through to advanced robot architectures in a
single environment [BKMY03]. Abstractions across robot hardware allow for di�erent kinds
of robots to be used as the control problems presented change throughout the course. Python
supports a number of di�erent programming methodologies, lending further �exibility to
Pyro. Pyro, subsequently developed as Myro has become part of the Calico Project, a wider
language agnostic andmulti-context framework and environment for teaching Computer Sci-
ence [BKM+12]. Robotics has also been used in Computer Science education as an application

44 CHAPTER 2. MOTIVATION AND BACKGROUND

area to increase student engagement, through the use of personal robots [KBB+08]. ¿ese
small robotics platforms allow for a constructivist, hands on approach involving physical,
tangible objects.

¿e �rst Computer Science course at MIT, 6.001, based on Scheme and the famed Structure
and Interpretation of Computer Programs (SICP) text has been replaced by 6.01, a course
taught in Python and focused on robotics, due to the engineering challenges inherent to them.
¿e motivation behind MIT’s move to robotics in the �rst course is captured by Martin’s
“Real Robots Don’t Drive Straight” [Mar07], that the signi�cance of feedback in a system to
adapt to changing conditions or imperfection in actions is an essential part of the learning
experience; Martin identi�es the damaging e�ect of these low-level feedback loops being
presented as closed loop higher-level primitives.

¿e use of small robots in the classroom as experienced by the author is fundamentally
driven by Papert’s theory of constructionism, that learning can happen best in a context
which has hands on, tangible elements [Pap86]. Papert expanded on and demonstrated these
concepts in a practical context in the book MindStorms with the LOGO Turtle, a computer
controlled device which introductory students could use to draw pictures by following a
series of commands [Pap80]. A LOGO Turtle may be either virtual, existing in simulation
and drawn on screen, or physical, using motion and a physical pen which may be raised or
lowered to produce a line on paper.

A collaboration between Papert’s research group, the MIT Media Lab, and the LEGO Group
resulted in a prototype Programmable Brick [RMSS96], a small embedded computer to be
used in conjunction with LEGO, allowing children to design programs that interacted with
the physical world. ¿e Programmable Brick was designed to maximise its input/output
capabilities to provide the most possible applications of the brick, able to read from six
sensors and control four motors or lights simultaneously. Programs were loaded to the Brick
via a cable connection to a computer, where programs were written in a dialect of LOGO.
Visual environments were developed for this LOGO dialect, a number of which are discussed
in Section 4.2.1.

¿e LEGOGroup subsequently commercialised the Programmable Brick as the LEGOMind-
storms RCX.¿e Mindstorms RCX has been used widely in Computer Science Education,
in a variety of contexts and in conjunction with a wide range of di�erent programming
paradigms [Bar02, Fag03, JCS03].

¿ese e�orts are based in the general principle that Robotics, speci�cally via small robot

2.6. PEDAGOGY OF PROCESS-ORIENTED ROBOTICS 45

platforms is an engaging area in which to motivate introductory programming.

2.6 Pedagogy of Process-oriented Robotics

occam, and subsequently occam-pi have been taught as part of the undergraduate Computer
Science degree program at the University of Kent for the last 25 years [Wel99]. A set of
standard exercises are used which place emphasis on the compositional aspects of the process-
oriented paradigm. A toolbox of elementary processes are used throughout the course,
known as the “Legoland” component set. Diagrams are the �rst representation of process-
oriented parallel programs the students experience and work with in the course, as an exercise
prompts them to write a parallel composition statement for a network diagram containing a
number of processes and channels. Starting with exercises involving composition of parallel
processes and channel connectivity emphasises the most signi�cant di�erences between
process-oriented programming and the object-oriented paradigm students are used to.

E�orts have been made by the author of this thesis and others at the University of Kent
to introduce robotics to this module as an area in which to motivate introductory process-
oriented programming. ¿ese e�orts have focused on making available environments which
present authentic challenges from robotics: the concurrency between sensory input and
actuation, task selection along with mediating control of the hardware and the error and
imprecision inherent to real-world robotic systems, sensing and actuation. ¿e following
subsections detail these e�orts and their input to the pedagogy surrounding concurrency at
the University of Kent and other academic institutions.

2.6.1 RoboDeb and Player/Stage

RoboDeb was a prepared virtual machine image for the free VMWare Player so ware that
allowed students to virtualise a Debian Linux system with the tools required for developing
robotics control so ware in occam-pi and simulating robots installed and pre-con�gured
ready for use [JJ07]. ¿e RoboDeb environment employed Player/Stage, a general purpose
robot control and simulation toolkit; Player runs as a device server, o�ering control over
hardware and Stage o�ers a simulation environment for Player devices [GVH03]. RoboDeb
also included a library for communicating with Player from occam-pi, providing process-
oriented abstractions over the underlying serial calls. Programs written for the Player device

46 CHAPTER 2. MOTIVATION AND BACKGROUND

server can be run both in simulation via Stage and on physical robotics hardware. In the case
of RoboDeb’s use at the University of Kent, this physical robotics platform is a single (due to
its relative expensive and size) ActivRobots Pioneer 3-DX [Mob] robot.

Figure 2.6: RoboDeb in action, a typical RoboDeb session with Player simulator and jEdit occam-pi
editing environment, from [JJ07].

Establishing a direct link between the simulated environment and a physical robot by running
student programs, designed for simulation, on the physical platform demonstrates the noise
and inaccuracy issues of the real world and hardware versus purely logical, so ware problems.
While the use of simulation disagrees with the constructivist agenda of hands-on making,
the convenience to students of having the option of wider access to a simulated robot and
environment at any time to work on their code was of bene�t.

¿e author has previously used the RoboDeb environment to deliver a workshop entitled
“occam-pi robotics: Complex Behaviours from Simple Systems” to Year 13 (17–18 year old)
students as part of their A-level quali�cation at a local school. ¿is workshop involved the
students starting with material involving sequential programming, moving on to parallel
process composition and �nally building a working program in the RoboDeb environment,
starting with a half-complete template and using process composition to add components to
form a working solution. ¿is session included a whiteboard exercise, asking the students to
direct the connection and creation of components, reasoning about the solution to a problem

2.6. PEDAGOGY OF PROCESS-ORIENTED ROBOTICS 47

graphically prior to their solving a similar exercise in code. ¿is graphical precursor to the
practical, symbolic coding task gave the students existing experience of high-level process
composition that allowed them to solve the task much more easily than expected.

2.6.2 Cylons

Cylons was an assessment designed by Peter Welch in 2007, based on an agent visualisation
by David Wood. Students were to design a robot control program which could navigate a
robot (represented by a circle) around a maze without becoming stuck. By default the robot
control program written would be spawned hundreds of times, controlling many robots
concurrently. It aimed to replicate some of the challenges of RoboDeb, but without the need
to run an entire virtualised system. ¿e programs were intended entirely to be run in a small
simulated environment, which had more in common with an agent simulation than a robot
simulator; actuator control and sensing were both without any degree of error. A key outcome
of the task was for students to obtain emergent behaviours, such as swarming and queueing,
from interactions between the robot, other robots and their environment.

2.6.3 Life on Mars

Life on Mars was an assignment set as part of the undergraduate concurrency course at
the University of Kent and designed to be completed by students at the end of the course.
¿e assignment has run four times since being designed by the author of this thesis in
collaboration with Ritson in 2009. Students are presented with a ‘martian’ world, shown
in Figure 2.7, featuring a sandy surface, a rocky outcrop (indicated by the lighter orange
areas), a number of coloured beacons and a red dot indicating the position of their robot.
¿e simulated robot is equipped with a front facing blob-�nder and a number of ultrasonic
hazard sensors placed around its circumference; the �eld of vision for the camera is indicated
by a cone of red lines and the hazard sensors are indicated by a series of yellow lines projecting
from the robot.

¿e robot is �tted with two motors powering a wheel on each side and a third castor wheel,
allowing it to be rotated on the spot and moved forward or backward. A command/response
interface is provided between the robot and the terminal the program is run from, allowing
the robot to accept user commands and output responses according to a de�ned occam-pi

protocol. An shared output channel on which BYTEs may be sent is provided as a convenience,

48 CHAPTER 2. MOTIVATION AND BACKGROUND

allowing students to output textual state from their robot programs to the terminal for
debugging. ¿is channel of debug output o en serves as a lesson in the di�culties of using
‘printf ’ style debugging with concurrent programs for the students, as use of this channel
throughout the program leads to contention issues between components. ¿ese e�ects and
their signi�cance to students learning how to reason about the behaviour of their programs
are discussed more fully in Section 5.2.4.

Figure 2.7: A screenshot of the Mars Simulator from the Life on Mars assignment

¿e so ware interface presented to this simulated robot is based that of a real robot, the
ActivMedia Pioneer 3-DX, with which both authors of the assignment have practical ex-
perience. ¿e interface is conceived in such a way that it is possible for programs designed
by students to be run on the real robot in a physical environment outside of the simulator.
¿e assignment aims to provide a realistic experience of programming for a robot control
problem in occam-pi whilst pragmatically avoiding the need for students to have continued
access to physical hardware and a lab environment to complete the assignment. ¿e use
of the virtual machine-based RoboDeb environment with Player/Stage by Jacobsen and
Jadud [JJ07] notionally removed the requirement for hardware and a lab environment, but
in implementation actually required the use of an additional laptop pre-con�gured for using
the virtual machine for a number of students. Life on Mars has the advantage of being a
standard occam-pi program, with no external dependencies on robotics hardware or simu-
lation environments. ¿is absence of dependencies means that Life on Mars is capable of
running on any platform where students have used the occam-pi language successfully for

2.6. PEDAGOGY OF PROCESS-ORIENTED ROBOTICS 49

earlier exercises.

To complete this assignment, students are asked to write a control program for the simulated
‘mars rover’ from a blank process body, achieving a growing level of competency over the com-
pletion of four assessed tasks. ¿e four tasks require an increasing amount of co-ordination
between sensing and locomotion: moving around safely, locating coloured markers, and
�nally delivering a package to a particular location indicated by two markers. ¿e �rst task is
to get the robot to respond to commands to turn from the operator and report back the exact
amount of turn the robot completed; the design of the robot interface is such that they must
request a turn in the correct direction then sum ticks back from the motors to determine
how far has been moved, to account for any slip that may occur. Even this most basic task
requires co-ordination between two sources of input (operator command requests and motor
ticks) and output (operator command responses and motor control commands). Students
start with this simple movement (allowing operator commands to be translated into rotation
and forward/backward motion), adding hazard detection from an array of ultrasonic sensors,
a simulated vision problem and then a combination of all of the above behaviours into a
routine which can deliver a package at an operator speci�ed location.

Life on Mars’ assignment support code presents a series of well de�ned process interfaces to
the simulated robot hardware, and these were designed such that a library could be made to
run these programs on a real robot platform. Some of these interfaces are more complex than
a simple synchronous channel - channel bundles are present which require a client/server
approach and the use of protocols to handle communication. For example, an operator chan-
nel bundle has both an operator.request? channel end, allowing messages to be received
from the virtual operator, and an operator.response! channel end, allowing messages
to be sent back to the operator console. ¿e assignment is structured such that students
have to get to grips with protocols immediately. At this point in the course students have
completed an assignment requiring them to design and use protocols of their own de�nition
in refactoring a simulation of the Dining Philosophers problem, as originally formulated by
Djikstra [Dij87]. ¿is progression is designed such that students are comfortable working
with channels that carry variants with di�erent parameters rather than single values or arrays
of basic types. Fully solving this assignment means the students have to deal with four sources
of input in parallel, and controlling both motors and a gripper actuator in response to the
input — a challenging task.

50 CHAPTER 2. MOTIVATION AND BACKGROUND

2.7 Wider Pedagogy of Concurrent Systems

¿ere is an increasing need for programmers who are able to make e�ective use of concur-
rency in a multi-core and many-core future of computing. Whilst considering the pedagogy
of process-oriented programming, it is also important to include the wider pedagogy of
concurrent systems. Teaching students to identify, avoid and solve common concurrency
errors, such as race hazards and deadlocks has traditionally been di�cult; a number of tools
have been developed in di�erent concurrency models and using di�erent approaches to
give programmers an understanding of the execution of their program. ¿ere are a number
of tools that aim to simulate and visualise the concurrency within a program, whether by
creating a visual representation of the concurrency primitive itself (thread, lock) or relating
execution state of the system to the program.¿is section does not aim to be a comprehensive
review of available tools and methods, rather identifying a representative set of approaches
taken in the literature.

2.7.1 BACI

BACI, the Ben-Ari Concurrent Interpreter is a concurrency simulator originally designed by
Ben-Ari [BAK99]. BACI consists of a compiler and interpreter combination; the compiler
generates code which can be run in the interpreter, the interpreter allows the visualisation of
machine state as the program runs. ¿is visualisation and externalisation of execution state
allows programmers to reason about and verify the behaviour of their code while it is being
executed.

2.7.2 SPIN and FDR Model Checkers

¿e SPIN model checker, designed by Holzmann for verifying communications networks, is
designed to allow the veri�cation of interactions between asynchronous processes [Hol97].
Ben-Ari created a pedagogic IDE around SPIN, jSpin to simplify interacting with the Spin
tool, along with a tool called SpinSpider, to draw state transition diagrams of the SPIN
output [BA07].

¿e modelling language used by SPIN, PROMELA (Process or ProtocolMeta Language),
allows the de�nition of concurrently executing processes communicating synchronously
over channels, meaning it would be possible to apply SPIN for verifying process-oriented

2.7. WIDER PEDAGOGY OF CONCURRENT SYSTEMS 51

programs. A similar approach would be possible via process-oriented paradigm’s relationship
to CSP, whereby CSP models of programs can be written for process-oriented programs. ¿e
FDR [For00] model checker by Formal Systems is able to verify a wide range of assertions
on the properties of CSP models, including freedom of the model from concurrency errors
such as livelock and deadlock (discussed further in Chapter 5).

¿ese approaches rely on using models as a target language, a layer removed from solving
practical problems and analysing their use of concurrency — helpful to illustrate and explore
concurrency issues, but not tied directly to the implementation of the program. Pedagogically,
to use a model checker of this kind requires teaching the modelling language on top of the
programming language in use for concurrent systems, doubling the burden and requiring
students tomap the logic and structure of their program into a programmodel in a completely
di�erent language before being able to check its properties. Errors made during this mapping
can remove the bene�t of model checking, the results gained from a model checker are only
as good as the accuracy of the model in capturing the semantics of the program.

Maintaining a model of a program in parallel with its implementation is problematic, as the
model and program are separate entities — errors can be introduced translating between the
two, updating the program code to re�ect a changed model, or updating the model to re�ect
a changed program.

2.7.3 Elucidate

Exton’s Elucidate is another trace visualisation tool, which aims to avoid requiring modi-
�cation of the users program to allow the visualisation [Ext00]. It makes use of debugging
support built into the Java VM, running the user program in a second VM alongside the one
running the Elucidate environment. ¿e use of a virtual machine with support for tracing
provides logging that is transparent to the user program. Not having tomodify the code being
debugged to receive traces of its behaviour is a signi�cant advantage, as modi�cation of the
code gives rise to the possibility of errors being introduced and with concurrent programs,
the potential for debugging code to change the temporal aspects of the program (the e�ects
of modifying programs and temporal issues in concurrent debugging are discussed further
in Sections 5.2 and 5.2.4).

52 CHAPTER 2. MOTIVATION AND BACKGROUND

2.7.4 ThreadMentor

¿readMentor is a pedagogic concurrency visualisation tool designed to let students observe
the actions of concurrent primitives within their programs [BCHS00, CMS03]. It consists
of a class library, designed to resemble the standard API’s for thread management and
concurrency primitives, which wraps around the underlying calls.¿is library communicates
with a visualisation system, updating the state of the primitives such that the user can see the
parallel state in their program.¿ere are disadvantages to this approach— as the visualisation
is a separate component there can be a delay between the observed activity of the system and
its visualised state.

2.7.5 ParaGraph

Heath and Etheridge’s ParaGraph aims to make use of the large quantities of information
generated when monitoring the behaviour of parallel programs, o�ering 25 di�erent per-
spective views over input traces [HE91]. ParaGraph is designed to monitor message passing
concurrent programs, and while not educational in nature, is motivated by aiding the user’s
understanding of their program’s execution for performance gain. It is interesting to consider
ParaGraph, as its approach of providing a very large range of visualisations of concurrent
program behaviour, from space-time diagrams to hypercubes and gantt charts pushes the
choice of appropriate visualisation to the end user. While Heath et al. set out to make Para-
Graph easy to use, an understanding of the visualisation types, their appropriate applications,
uses and comprehension of how the measured property can be a�ected by changes to the
program are all required for its e�ective application.

2.7.6 PARADE, POLKA and XTANGO

¿e PARallel program Animation Development Environment (PARADE) system created by
Stasko et al [SK93, Sta95] is another visualization system designed to allow users to observe
the behaviour of their algorithms, although instead of visualizing concurrent primitives it
allows the creation of customisable visualizations appropriate to the individual programs.
¿e POLKA animation system, a component part of PARADE, is designed to allow the
animation of algorithms without requiring any low-level graphics code to be written. A
direct antecedent, XTANGO, has been used successfully in this role in the classroom for

2.7. WIDER PEDAGOGY OF CONCURRENT SYSTEMS 53

visualising operating systems [Har94]. POLKA provides high-level shape drawing primitives
to construct visualisations and a C library based interface which facilitates parallel updates of
the diagram in sync with the program. With a system of this kind, the end-user would insert
calls to the animation library to create and update the state of the visualisation in step with
program state. ¿e wider PARADE system includes gthreads, a set of macros designed to
monitor the activity of the standard pthreads threading library, allowing for the automated
generation of tracing code for programs built to use this library with minimal modi�cation.
However, all of the intended uses of these tools expect that there will be modi�cation to the
underlying program to provide traces for later visualisation.

54 CHAPTER 2. MOTIVATION AND BACKGROUND

Chapter 3

Process-oriented Robotics

Robot Control is a mixture of both engineering and arti�cial intelligence, presenting a unique
set of challenges to the programmer. Robots sense and interact with their environment,
transforming the input from sensors into output actuation and producing behaviour. A robot
will typically have multiple sensors and multiple e�ectors, all of which must be controlled
simultaneously. ¿is inherent concurrency means that use of multiple control loops or
complex interleaving of tasks is required even before considering the computation involved
in decision making.

When writing programs for robots that run in the real world, as opposed to simulation, it
is essential to consider control as a real-time problem. When writing real-time programs,
run-time performance becomes clear — the delay between a robot sensing a condition and
acting upon it is visible as hesitation in the robot’s reaction to stimuli. ¿e performance
di�erences between desktop PC hardware and embedded platforms typically found in small
robot platforms exacerbate this e�ect; on a desktop PC a badly written program may simply
take longer to complete whereas on a robot badly written robot program may perform its
task unsafely or completely fail to do so.

¿e correct use of interleaving or concurrency in a robot control program is critical in
ensuring the expected behaviour of a robot. Even simple robots have multiple tasks to achieve
simultaneously. If a robot is programmed to avoid walls whilst carrying out other tasks,
the control program must co-operate between the tasks and the sensing, computation and
actuation of the task which allows it to avoid walls. ¿is need to handle concurrent tasks
in the problem domain motivates the application of a concurrent programming model;
the ability to consider a robot control problem in terms of data-�ow further motivates a

56 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

process-oriented and synchronous message-passing based approach. ¿ere are a number of
research areas covered in this chapter:

• Making process-oriented programming available on robot platforms suitable for the
classroom, designing programming interfaces which make use of the robot’s hardware
consistent with the programming model.

• Combining existing behavioural robotics architectures and the process-orientedmodel,
to establish the applicability of the model to established methodology and implications
for structuring process-oriented robot programs beyond ad-hoc process networks.

• Applying existing process-oriented design, taught as part of an existing concurrency
course, to robotics.

• Presentation of a case study process-oriented robot program against an equivalent
C-based robot program to establish the viability of and identify properties of the
process-oriented model in this context.

Developments in each of these areas have informed each other, the end result being a body
of knowledge and established evidence of the viability and applicability of the principles es-
tablished. ¿is chapter lies at intersection of robot control and the process-oriented program-
ming model, providing an answer to an overarching question; how can the process-oriented
programming model be e�ectively applied to the problem of robot control? ¿e case study
which concludes this chapter both establishes the viability of a process-oriented approach
using occam-pi for robotics and identi�es a number of advantages this approach brings over
an existing approach.

3.1 Process-oriented Programming on Robot Platforms

It is the author’s belief that robot programming is most compelling when the robot is able
to act independently of, and untethered from, the computer used to program it. Real world
robot applications o en require this ability, and in the classroom there are speci�c pedagogic
bene�ts to presenting constructivist ‘hands on’ elements along with programming tasks
(detailed in Section 2.5). ¿is is not to say that tele-operation is without bene�ts – desktop
toolchains may be used relatively unmodi�ed (save the development of any necessary inter-
face or communication libraries) and there are no issues with building program loaders or

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 57

custom �rmwares. A number of robot ports, their operating so ware and hardware interfaces
are discussed below, along with a single robot operated by desktop interface (the LynxMotion
AH3-R Hexapod, as further discussed in Section 3.1.7).

3.1.1 Run-time Support

While process-oriented programs may be written in many programming languages, via
library or otherwise, occam-pi provides both the clearest expression and the availability
of a run-time environment that makes porting straightforward. ¿e reasons for choosing
occam-pi as a process-oriented implementation language are discussed in Section 2.2.1.

¿e Transterpreter (introduced in Section 2.2.5) has a rich history of being ported to new
architectures and platforms, as an intellectual exercise [Jac06] demonstration of its design
strength for portability and to facilitate research explorations using the process-oriented
programming model [DJJ06]. ¿is history has carried over into facilitating the use of robot
platforms for process-oriented programming. As described in Section 1.3, a number of
researchers at other institutions have used these ports for principles and design inspiration
when designing their own process interfaces for robotics. ¿e single threaded nature of
the Transterpreter has not been a limitation to this work, as none of the robots used have
hardware parallelism. Use of a multi or many-core embedded board for process-oriented
robot control would be a fertile area of future work and is discussed in Chapter 6.

3.1.2 Process-oriented Hardware Interfaces

¿e design choices made when providing an interface to the robot hardware to programmers
in�uence the design choices they will make when writing their programs. When seeking to
provide an environment in which the process-oriented model may be taught and motivated,
the provision of sequential, imperative interfaces to the underlying hardware is undesirable.
¿e �rst steps for a programmer in writing a process-oriented robot program should not
involve encapsulating calls to and from hardware functions to allow use of message passing
and concurrency in the program, this should be a feature of the hardware interface provided.
Presenting the hardware via a process-oriented interface to the programmer provides an
appropriate starting point from which their programs may build, with sensor data provided
as messages into the program and control of e�ectors facilitated via messages out of it. ¿e
author and a number of collaborators have worked on facilitating the use of process-oriented

58 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

programming on robot platforms, via additional runtime support and the creation of such
concurrent hardware interfaces.

As discussed in Section 2.2.2, the origins of occam-pimean it has built-in language features
designed for low-level interfacing to hardware, placing variables at speci�cmemory addresses
and so on.¿ese language features can be used to build hardware interfaces that avoid calling
to libraries written in other programming languages and using underlying abstractions.
providing a interface based around processes and communication from the hardware up.

Building interfaces comprised entirely of occam-pi processes executing within the virtual ma-
chine context allows reasoning about the behaviour of the hardware from the process-oriented
run-time environment. When using external libraries, providing a process abstraction over
underlying calls can introduce undesirable and ine�cient polling to maintain the synchron-
isation between the underlying activity and the process’ behaviour, interfering with the virtual
machine’s scheduling and execution performance. Interactions between the virtual machine’s
mechanisms for calling out to external functions and libraries and side e�ects in the external
code can also produce unpredictable behaviour.

However interfacing completely in occam-pi is not always possible or practical. It is o en
desirable to re-use existing hardware interfaces and existing platform code, especially when
bootstrapping a port to run the virtual machine on a new platform or where the underlying
libraries provide acceptable performance and characteristics for the desired application. ¿e
following section addresses interfacing to external libraries and its existing applications to
process-oriented robotics.

3.1.3 Calling into Existing Libraries

Having to wrap a process-oriented interface on top of high level abstractions can cause
problems; as the run-time behaviour of a call made from the process-oriented environment
into the underlying library is not entirely contained within the process-oriented run time
the programmer can reason about. For expedience, the �rst port of call in making use of a
robot platform, a er providing a functioning run-time port of a process-oriented language,
is o en wrapping the existing, proven, libraries for controlling it.

¿e KRoC toolchain provides a Foreign Function Interface (FFI) for calling into C functions
from occam, which appears as a function call in the occam source.¿is mechanism originally
only supported non-blocking calls [Woo98] and support was added later for allowing pro-

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 59

cesses to make blocking calls (such as those to �le or network operations) [Bar00]. ¿ese FFI
calls require wrapper code to be written for each target C function that it is desirable to make
available from occam. E�orts have been made to harness automated tools for analysing C
libraries and generating these wrappers automatically; Dimmich added support for occam-pi

to SWIG (the Simpli�ed Wrapper Interface Generator), a general purpose piece of so ware
for creating bindings between libraries and scripting language. [DJ05]. However, use of SWIG
require extensive setup and con�guration and it is o en more e�cient for a small number of
functions for the wrapper processes and functions to be written by hand.

An example of using the FFI to access a C function wrapped via SWIG is shown in Figure 3.1,
showing the layers of processes and functions in both the occam-pi and C runtimes. Two of
the wrappers are auto-generated by SWIG: a C wrapper pre�xed by an underscore which can
accept arguments in the occam-pi style and an occam-pi functionwhich accepts the arguments
required by the underlying C function. ¿e mapping from C brings with it the expectation of
shared state, in the example wrapping there is a self structure passed into each function in
C which is wrapped into the occam-pi function — a clean process-oriented implementation
requires isolating this state into a process and creating a communication based interface, as
seen in the �gure. ¿e depth of the stack and wrappings also highlights another issue, the
unpredictability and e�ects of calling into a secondary runtime environment and functions
in another language from occam-pi. ¿ese wrappings do not give the same guarantees of
safety and correctness against concurrency errors with calls wrapped in this way, as state can
be maintained in the C library outside of the occam-pi runtime environment; these calls also
a�ect the scheduling of processes, as they must switch to executing a C function.

A more advanced method for interfacing to C called CIF is available in occam-pi via the
KRoC toolchain [Bar05]. CIF allows for processes to be de�ned in C and run alongside the
processes written in occam-pi, with the same scheduling and communication characteristics.
As typically the need for interfacing to C is rooted in the need for access to third-party
libraries inside occam itself, being able to interface by writing C processes is of less utility.
Additionally, due to the use of separately compiled C as part of the program at run-time this
method is not supported by the Transterpreter runtime used for running occam-pi on robot
platforms.

60 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

C run-time environment

occam-pi run-time environment

SWIG Auto-generated occam-pi function wrapper
playerc.laser.t.scan.get(VAL playerc.laser.t self,

RESULT INT return.value)

occam-pi sequential wrapper
laser.read(VAL playerc.laser.t laser, VAL INT sample,

RESULT INT dist, RESULT INT angle)

SWIG Auto-generated C function wrapper
_playerc_laser_t_scan_get(word occ_args[])

occam-pi process interface
laser.loop(VAL laser, CHAN BOOL refresh!, CHAN LASER data!)

libplayer Library C function
playerc_laser_t_scan_get()

Figure 3.1: Architectural diagram of the occam-pi process interface and C Foreign Function wrapping for
reading from a laser in Player/Stage from occam-pi

3.1.4 ActivMedia Pioneer 3-DX

¿ePioneer 3-DX, produced by ActivMedia Robotics, has twowheel di�erential drive, sixteen
ultrasonic range-�nders around its circumference, and a high resolution laser range-�nder,
which provides centimetre resolution to an eight meter distance in a forward-facing, 180○ arc.
¿e particular robot used for these experiments contained a 700MHz PC104 board and was
running Debian GNU/Linux; much faster boards are available for �tment in contemporary
versions of this robot.

¿ere are several ways to program a robot like the Pioneer 3. First, it is possible to forego
the embedded PC104 and program directly against the robot’s hardware control board,
connected to the PC via a serial port. Second, the manufacturer provides an object-oriented
API (accessible from C, C++, Java, and Python), called ARIA, which provides a control
interface for all of their robotics platforms [Ade12]. ¿ird, and most interesting is the open-
source Player API, a cross-platform robotics API written in C/C++ and compatible with the

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 61

Stage simulation environment [GVH03].

Player provides an abstracted driver interface for motors, sensors, and other devices typically
found on a robot, allowing control logic to be ported between supported robot platforms
with minimal modi�cation to the program. Player is designed to be run as a client/server
application, meaning code to generate control signals can written against the client library
and run on a remote desktop PC, while the server (controlling the hardware) runs on a robot
directly. ¿e two may be connected via ethernet, Wi-Fi or a serial port.

¿is client/server separation also makes the use of a simulator signi�cantly more straight-
forward; a simulator can present itself as a player server in an identical way to an actual
player server controlling a physical robot platform. ¿e di�erence between simulation and
the real robot is hidden from the program interfacing to Player. ¿ere are two simulators in
the Player so ware distribution: Stage, a 2D simulator capable of displaying dozens of robots
simultaneously and Gazebo, a 3D simulator which provides a virtual world complete with
accurate physics for more in-depth testing of control algorithms.

Platform support in the RoboDeb project by Jacobsen et al. was accomplished through use of
Player/Stage, interfacing to the Player robot driver so ware via its C library interface [JJ07].
A number of wrapping processes were created around these FFI calls, e�ectively allowing
direct usage of the underlying C functions to the user program with minimal translation of
parameter types and other minor changes. A secondary layer of process interfaces were sup-
plied as part of this support library, o�ering a channel interface to the motor and ultrasound
ranging hardware rather than the strict sequential interfacing of the C API. A deconstruction
of the architecture of this wrapping is shown in Figure 3.1.

¿e layers of support code and indirection between the original C code and the user space
occam-pi processes are undesirable but do not prevent e�ective use of the Player/Stage envir-
onment for process-oriented robotics when running on a high powered desktop computer
or on the Pioneer 3 robot (a 700MHz PC board in the model used at the time, but currently
available with up to 2.26GHz Dual Core CPUs).¿e removal of these layers is a desirable goal,
from a port maintenance, code path simplicity and execution e�ciency point of view; these
layers have a negative e�ect on the ability to reason about the behaviour of user programs, as
there is potential for state and timing-related errors given the interplay between them.

62 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

3.1.5 LEGOMindstorms RCX

¿e LEGO Mindstorms RCX is the �rst in the series of the LEGO Mindstorms robotics
kits, based on the concepts of the original programmable brick developed at MIT. ¿e
programmable brick from which the set takes its name (shown in Figure 3.2) is known as
the RCX; the RCX contains a small embedded system consisting of a 16MHz Hitachi H8
architecture CPU, 16KB of ROM containing low level routines to operate the hardware and
32KB of RAM for �rmware and user programs. On the surface of the RCX are three input
and three output ports, a LCD display for indicating the state of the system and four push
buttons to control power and program execution. ¿e RCX is �tted with an infra-red (IR)
port which allows for communication, this IR port is also used for uploading �rmware and
programs to the brick from a host computer.

A B C

1 2 3View

On-Off Run

Prgm

R
C

X 1.0 86
75

30
9

Figure 3.2: An illustration of the RCX programmable brick supplied with the LEGO Mindstorms RCX
invention kit

¿e RCX is a constrained environment in which to run a virtual machine, custom designed
�rmware and a user program. When providing a user environment for programming the
RCX the three elements are part of a constant trade-o�: every kilobyte of RAM consumed by
the runtime, �rmware, or interfacing code is a kilobyte less available for user programs. ¿e
e�ect of these constraints was clear in Jadud and Jacobsen’s original port of the Transterpreter
virtual machine (TVM) to the RCX, where support was achieved by executing the virtual
machine as a program running on top of an existing third-party OS for the RCX [JJ05]. In this

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 63

�rst port Noga’s BrickOS [Nog04] handled running the RCX itself, while the TVM and user
program were combined, uploaded and run as a single BrickOS program. ¿is particular set
of trade-o�s meant there were serious constraints on the use of occam-pi on the RCX beyond
the most elementary examples; either programs grew too big for the combined program
and VM to be uploaded, or programs failed at run-time as there were no space in RAM for
allocation of memory a er the combination was present.

Given these practical constraints and the desire to investigate the possibility of a process-
oriented �rmware, the author implemented a replacement port of the TVM to the RCX,
keeping asmuch of the code comprising the port inside the occam-pi run time environment as
possible. Some small C functions were written to allow calls into the RCX’s ROM and handle
passing of addresses/values back and forth to those calls. All of the higher level interaction is
composed in occam-pi inside the virtual machine. Aminimal amount of C andH8 assembly is
used to initialise the hardware and pass control to the TVM’s scheduler. Putting the majority
of the runtime code inside the occam-pi environment results in the scheduling of hardware
processes and semantics of the hardware interface being consistent with the user program.
Existing commonly used run-times for the RCX, LeJOS and BrickOS, use a time slicing
model of concurrency presented via a threading interface to the programmer. ¿is approach
of providing a threading library has the potential for programmers to create many classes of
concurrency error [Boe05].

Figure 3.3 shows the memory use of both the original the Transterpreter port when running
as a program within BrickOS and the native port described here, removing BrickOS and
replacing it with an occam-pi-based operating environment. Both the TVMand a replacement
operating system for the RCX �t within 11KB of RAM, 1KB less than BrickOS running alone
and providing an additional 9KB of space for program storage and memory usage when
comparing each running the TVM and providing an occam-pi runtime. Additionally, a
number of interface processes to provide hardware abstractions would be contained within
the program bytecode itself - in the native port, fewer of these processes are required as a
number are provided directly by the occam-pi-based operating environment.¿e combination
of an occam-pi runtime and operating environment provide a safe, message passing based
interface for using the underlying hardware from concurrent programs.

¿e recon�gurable nature of the RCX, with generic 2 × 2 stud LEGO brick input and output
ports, is a challenge for so ware recon�gurability; users may connect any type of sensor to
any of the three input ports (labeled 1–3) and any type of actuator to the three output ports
(labeled A–C) at any time. ¿e hardware itself is not capable of distinguishing between the

64 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

RAM (32k)

Free
(12k)

ROM
use
(4k)

TVM
(11k)

Byte
code
(3k)

2k

RAM (32k)

Free
(3k)

BrickOS
(12k)

ROM
use
(4k)

TVM
(8k)

Byte
code
(3k)

2k

Figure 3.3:Memory consumption for the Transterpreter VM running as a BrickOS program (top) and
natively, without an underlying operating system (bottom)

types of sensor or motor connected, meaning information about which sensors and motors
are connected to which ports must be contained within the user program. ¿is modular
connectivity can be re�ected in the architecture of so ware interfacing components; as the
physical con�guration of the robot changes, the topology of the process network can be
recon�gured and altered in a way that directly re�ects the physical changes.

A sensor can be represented by an individual process - light.sensor, which is paramet-
erised with a constant which indicates the location of the sensor (e.g. SENSOR.1).¿is process
wraps up all underlying calls to the hardware, in this case wrapping over a sensor process.¿e
user is presented with an API which provides streams of sensor data over channels coming in
from sensor processes and a set of actuator processes which accept commands over a channel
interface. ¿e user can specify the con�guration of the hardware through using di�erent
kinds of processes parameterised to read from di�erent ports on the hardware.

When creating a hardware interfaces to the RCX, a type based-system was used whereby
channels carrying data to and from the processes interfacing to the hardware were given
a type according to the kind of sensor or actuator. ¿is permitted type enforcement when
building components for robot programs — a process could express in its interface explicitly
that it expected a light sensor input, a touch sensor input and a motor control output. ¿is
idea is ultimately �awed outside of a fully graphical environment, given the lack of generic

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 65

types in occam-pi, the simplest components for dealing with channels of integers (thresholds,
deltas etc.) have to be rewritten for every type in use.

When writing programs textually this means one of the �rst language features that must be
taught is the type system and typecasting to allow these individual types to be converted to
and from standard language datatypes. ¿is explicit conversion step places a barrier between
communication between processes and the processing inside each process, requiring conver-
sions to and from individual types per sensor or actuator. As individual processes inside the
network away from the hardware interface may use standard data types for communication,
there is also a lack of consistency in how this type conversionmust be applied. Using standard
datatypes for the hardware interface, allowing the re-use of prede�ned generic components
like multiplexers or deltas and removing the need for type conversion reduces the complexity
of applying process-oriented programming and makes a graphical environment more useful.

3.1.6 Surveyor SRV-1

¿e Surveyor SRV-1 is a small tracked robot platform designed with the goal of encouraging
explorations of computer vision for mobile robotics [Gor08], shown in Figure 3.4. ¿e only
source of sensory input is a �xed forward-facing 2 Megapixel camera along with two forward-
facing laser pointers. ¿e robot uses a 500MHz Analog Devices Black�n DSP processor
along with 32MB of SDRAM and is equipped with Wi-Fi connectivity, provided as a serial
IO interface to the hardware.

Wi-Fi connectivity on the SRV-1 is provided by a serial interface exposed over a TCP/IP port,
meaning it is relatively trivial to communicate with from the desktop.¿is network capability
allows the creation of programming environments for the SRV-1 which communicate with
the robot directly to upload new programs, streamlining the process of working with a remote
robot host separate to the development machine.

¿e SRV-1 is the same physical size and similar in motion capabilities to a basic Mindstorms
RCX robot with tracks (in fact, the early production SRV-1 used in this work uses rubber
tracks identical to those supplied with the RCX). ¿ese physical similarities provide for a
signi�cant contrast in capability between the SRV-1 and the RCX; the SRV-1’s signi�cantly
faster CPU, camera and WiFi connectivity make it more computationally interesting as a
platform for robotics but additional cost dramatically reduces its practicality for classroom
teaching.

66 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

Figure 3.4:¿e Surveyor SRV-1 Mobile Robot

¿e SRV-1 introduced a problem not found in prior platforms - the development of a channel-
based interface for streaming video from the 2 Mega-pixel camera on the board. Whilst the
Pioneer is also �tted with a camera (in the case of the robot available to the author, a high end
Sony EVI-D70 Pan/Tilt/Zoom video camera with independent serial control of the camera’s
motion) the Player device proxy controls the image data stream and converts it into a blob
stream, signi�cantly simplifying its use.¿e Pioneer is sensor rich, with a SICK LMS200 laser
range�nder and 16 ultrasound range�nders mounted around its circumference, allowing a
lot of use of the robots without using the camera feed. In contrast, the SRV-1 has only a front-
facing camera, with ranging ability provided by two laser pointers also facing forward. ¿ese
pointers provide ranging via measuring their size and intensity in frames from the camera.
¿e lack of sensors makes e�ective use of camera data on the SRV-1 from occam-pi critical to
meaningful use of the robot platform. Work with occam-pi in the classroom typically allows
the the cost of communication along channels to be ignored, as channels are typically typed
INT’s, BYTE’s, or BOOL’s — very small data types and typical communications consist of single
values. Camera data, in the form of entire bitmapped frames, has very di�erent properties
and considerations required in the design of process-oriented programs. Communication
patterns, the costs of message passing and process execution performance become important

3.1. PROCESS-ORIENTED PROGRAMMING ON ROBOT PLATFORMS 67

when input messages take the form of 2MB frames from the camera being delivered at a
constant rate.

¿e SRV-1 port of the Transterpreter was constructed with the same aim as that of the RCX
port: to provide a process-oriented hardware interface running with a minimal amount of
code running outside of the occam-pi run-time environment. Making the interface code
and �rmware behave with the same semantics as a user program allows the programmer
to reason about the concurrent behaviour of the interface and its interactions with their
program.

On the RCX, the ability of the run-time environment is limited by the capabilities of the
hardware. Given the RCX’s 16 MHz CPU and 32KB of RAM it is unrealistic to retain the
hardware interfacing processes in memory and dynamically recon�gure the process network,
or use channel bundles and dynamic memory. Hence the RCX uses an approach whereby
a minimal occam-pi �rmware is present to receive programs over IR and start/stop their
execution, leaving the hardware interface to be compiled into and supplied as part of the
uploaded user program. Compiling hardware interfaces into the programmeans theymust be
loaded individually with every user program, as the virtual machine considers the hardware
interface part of the user program the processes are scheduled together, in a single scheduler.
¿e downside of this approach is that a run-time error condition in the user program renders
the entire user program (including hardware interfaces) unresponsive, as the occam-pi

processes handling button presses to stop the program are also stopped due to the error.
For serious application of process-oriented programming to robotics this kind of run-time
behaviour is unacceptable.

¿ere are signi�cant safety concerns in the robot control program and its runtime becoming
unresponsive; any protection built into the �rmware to ensure actions are stopped will not
take e�ect. ¿is behaviour also poses problems for introductory, pedagogic use; introductory
programmers are likely to create errors and having the entire platform lock upmeans no useful
information can be gleaned about the error. Strategies for providing debugging capability to
identify such errors are discussed further in Chapter 5.

As the SRV-1 has a signi�cantly faster processor and much more RAM, a new method could
be used; the virtual machine was extended to allow multiple execution contexts, meaning
multiple occam-pi programs could be run simultaneously side-by-side in a single virtual
machine instance. An interface for communicating between these contexts is provided, along
with the ability to create new contexts and control their execution. ¿is permits a design of
the �rmware as two separate occam-pi programs: a �rmware program, o�ering a process-

68 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

oriented interface to the hardware, code loading and execution control; and the robot control
program, which operates independently and may encounter run-time errors without halting
the entire system.

¿e ability to run an occam-pi program from inside another occam-pi program without
a�ecting its own execution allows a process-oriented program loader and �rmware to be run
which can accept subsequent programs over theWi-Fi serial interface.¿e hardware interface
and program loading code runs permanently as �rmware in one half of the virtual machine;
it provides a message passing interface which allows the user program to receive sensor
input and control the hardware. Figure 3.5 shows the architecture of this virtual machine
port supporting multiple contexts, with the hardware interface loaded and connected to an
example user program.

Virtual Machine

Firmware User Program

run.bytecode

camera

lasers

motors

system

console
uart

get.image avg.luma

laser.ctl is.dark

Figure 3.5: Architectural diagram of the Surveyor SRV-1 port of the Transterpreter virtual machine,
showing the �rmware processes active and a user program loaded.

Channel bundles are used in the SRV-1 interface, as their name would suggest, these are
collections of channels de�ned as bundle types. ¿is allows the provision of a client/server
interface to pieces of the hardware – a programmer may request a frame from the camera on
the request channel of the camera interface and get the response on a separate channel typed
appropriately for mobile byte arrays. ¿e client/server interface is a speci�c communication

3.2. BRAITENBERG VEHICLES 69

pattern in occam-pi, designed to avoid deadlock when correctly implemented [MW97].

¿e use of channel bundles adds complexity to the interface between the program and the ro-
bot; students would typically only deal with separate channels carrying basic types. However,
the result is a more powerful and �exible interface to the hardware which provides full parity
with the manufacturer’s supplied �rmware whilst also providing access to lightweight concur-
rency primitives; the use of a threading model to permit the same degree of concurrency in
C would increase the complexity of programs. A case study is presented in Section 3.6 which
examines the properties and performance of this process-oriented �rmware running an
occam-pi program against the manufacturer supplied imperative �rmware and an equivalent
C program.

3.1.7 LynxMotion AH3-R

¿e LynxMotion AH3-R Hexapod is a six legged walking robot [Lyn]. Each leg is roughly
60 degrees apart and driven by three servos, giving it three degrees of freedom: swinging
forward or backward, raising or lowering, and extending or contracting.¿eHexapod is �tted
with ultrasound range �nders on a rotating turret covering 360 degrees around the robot,
controlled by an Arduino based micro-controller. ¿ere are also two tilt sensors, mounted at
90 degrees on the robot’s body and pressure sensors on each of the robot’s feet. ¿e robot
is controlled via a serial link to a host PC. ¿e Hexapod stands apart from the other ports
discussed above, as the robot architecture work conducted on it consists of occam-pi programs
written on the desktop for the KRoC toolchain, using a serial library to communicate with
the robot itself.

3.2 Braitenberg Vehicles

Braitenberg Vehicles are a series of psychology thought experiments, designed to invoke
reactions of human-like emotion with very simple, directly reactive systems created by
Valentino Braitenberg [Bra86]. ¿ey also form a set of the simplest possible reactive control
systems, expressed through direct wiring between input sensors and output actuators in their
original form. Two of Braitenberg’s original vehicles are shown in Figure 3.6. ¿ese vehicles
contain two light sensors and two wheels, with a pair of each on either side of the robot.

In Vehicle 2a, stimulus to the light sensor on the le side is delivered to the le motor, and

70 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

+ ++ +

Vehicle 2a Vehicle 2b

Figure 3.6: Vehicle 2a, a Robot that ‘avoids’ light, and Vehicle 2b, a Robot that ‘likes’ light

vice versa on the right; when vehicle 2a encounters more light on its le , the speed of its le
motor is higher than the speed of its right motor, turning itself right, away from the light.
In Vehicle 2b, the connections are inverted, meaning higher light levels on one side of the
robot will speed up the opposite motor. ¿is results in the robot turning toward light sources;
a higher light level on the le of the robot increases the speed of the right motor, turning
the robot le . ¿e general light level of the environment will control the overall speed of
movement for both vehicles.

light.sensor
(PORT.1)

INT light.1 motor.speed
(PORT.A)

light.sensor
(PORT.3)

INT light.3 motor.speed
(PORT.C)

light.sensor
(PORT.1)

INT light.3

motor.speed
(PORT.A)

light.sensor
(PORT.3)

INT light.1

motor.speed
(PORT.C)

+ +

Figure 3.7: A RCX controlled vehicle and occam-pi process networks for robot programs that ‘avoid’ light
(top) and ‘like’ light (bottom)

¿e experiments have value as an exercise in introductory process-oriented so ware engineer-
ing, mapping the direct connection to connectivity between processes, connecting the output

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 71

of sensor reading processes directly to the inputs of the actuators. ¿e process networks
required to implement these vehicles are straightforward, as shown in Figure 3.7, along with
a diagram of a RCX-based vehicle platform for clarity. ¿e RCX-based vehicle has the le
and right light sensors connected to ports 1 and 3 respectively, and the two motors connected
to ports A and C respectively. Given processes that scale their values appropriately, in this
case to the range -100–0–100, they can be connected together directly to implement vehicles.
¿e only con�guration required of the processes is setting which hardware ports the sensors
or actuators are connected to. No sequential code is required, as the solution is pure process
composition and channel creation; this lack of programming and focus on wire-up makes
the vehicles a suitable environment in which to motivate visual process network composition,
discussed fully in Section 4.3.2.

3.3 Process-oriented Robot Architectures

Behavioural robotics, as introduced in Section 2.3.4, involves robot systems composed of
independent behaviours. Given the concurrency inherent to managing multiple behaviours
running on a single robot, the use of a programming model in which components may run
concurrently and which provides facilities for data sharing and communication between
concurrently running processes is an area of interest. ¿e separation of robot control into
individual, independent tasks found in behavioural robotics has a similarity to the decompos-
ition of a program into individual, independently executing processes in the process-oriented
model.

In Behavioural robotics, rather than building a single shared world view with sensory input,
each component is designed to receive just the subset of sensor data required for its func-
tion and process it independently. In the absence of this planner-built uni�ed world view,
behavioural systems rely on the consistency of the world itself as measured by sensors to
co-ordinate between the di�erent components in the system.

¿e application of standard process-oriented decompositions of robot control programs
results in programs with a large number of concurrently executing components. ¿ere are
a number of existing robot architectures, which aim to provide structuring principles and
patterns for interaction between components, specialised for robot control. Implementing
these architectures in occam-pi, as a process-oriented language, serves two goals:

• To examine the suitability of occam-pi and by extension process-oriented programming

72 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

as a foundation for building robotic control programs following existing methodolo-
gies.

• To enable a specialised set of primitives and principles for constructing robot programs
to be used in occam-pi.

Expressing these architectures in terms of a process-oriented programming language, such as
occam-pi, allows us to distil design rules, structures and primitives for use in the development
of process architectures for robot control.

3.3.1 Subsumption Architecture

Brooks’ subsumption architecture [Bro86] was one of the �rst behavioural control systems,
allowing robot programs to be expressed as a hierarchy of levels of competence which
interact with one another to control the robot. Brooks’ original Subsumption architecture
was implemented used a network of �nite state machines known as modules, along with
asynchronous message passing between input and output ports on these modules. Brooks’
terms the connections between these ports wires for reasoning purposes. Modules output
values to a port and the most recent value output to that port is available for input to the
receiver constantly essentially providing a memory cell located in front of the port into which
values are written. ¿ese communications are asynchronous due to assumed unreliability
of the message sending between components; one-place bu�ering provides resilience by
allowing the process to execute using the latest successfully received data.

¿e subsumption architecture contains two unique primitives used for composing modules
together; inhibition and suppression. Inputs to a module may be suppressed for a period,
replacing them with a di�erent source of input and discarding the original input. Outputs
from a module may also be inhibited for a period, causing them to be discarded entirely.
Modules are composed into layers, each adding an increasing level of competence to the robot’s
behaviour. ¿ese layers co-ordinate by using the suppression and inhibition mechanisms to
recon�gure and control communication between modules in lower layers of the system and
the robot’s hardware interface.

In Brooks’ original implementation, these modules are compiled along with a scheduler
which supports executing them both concurrently on a single processor and in parallel across
multiple processors. ¿e ability to mix both concurrency and parallelism was exploited in

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 73

Brooks’ six-legged walking robot “Genghis”, which had a control system consisting of 57
�nite state machines running on four processors [Bro89].

Process-oriented programming makes implementing robot control programs using the
Subsumption Architecture straightforward, as a number of the primitives can be mapped
directly onto the primitives of the process-oriented model. ¿e concurrently executing, �nite
state machine modules become processes, the wires connecting them become channels, with
input and output ports being channel ends.

I
3

S
10

module

Suppression

Inhibition

OutputsInputs

Figure 3.8:Amodule for a Subsumption Architecture, with a suppressor on an input line and an inhibitor
on an output line

Figure 3.8 shows a module in the style of Brooks’ diagrams with both suppression of an
input wire and inhibition of an output wire. ¿e circles are used to indicate inhibition or
suppression, via the I or S at the top of the circle and the value at the bottom is the speci�ed
timeout period before usual input to or output from the module resumes. Diagrams of this
style are used in Brooks’ 1984 paper to show the networks of modules and their wiring; there
is a considerable resemblance to the process network diagrams used in process-oriented
programming due to the similarity of the two models.

As process-oriented programming provides synchronous channel communication, the one-
place bu�ering behaviour of reads and writes in Brooks’ original model can be removed;
processes act only when there is new input rather than having a bu�er to ensure a value is
always available when they execute. Suppression and inhibition in the original subsumption
architecture were speci�ed in terms of wire behaviour, which cannot be mapped directly onto
the process-oriented model, as channels cannot have programmed channel end behaviours.
Suppression and inhibition can be modelled as processes with the original semantics from
Brooks’ wire ends; using processes for these primitives makes them more evident in the

74 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

design of the program at the network level.¿is increased visibility has a correlation to Brooks’
diagrams, which show inhibition and suppression as individual components despite them
not being separate components in the original model.¿e semantics of each primitive and an
example process-oriented implementation are presented below, these two process templates
combined with the language model allow the full expression of subsumption architectures.

Suppression

To suppress an input to a module an additional, suppressing, wire is connected to the input
port. When this second wire becomes active the messages received along it are sent to the
module as input, and any messages received on the normal input are ignored once this input
occurs. ¿e original input will be ignored for a set timeout period once a message is received
on the second wire. ¿e second wire e�ectively replaces any input on the ordinary input wire
for the length of the timeout, suppressing the input.

suppress.int
VAL INT timeout

INT out

INT suppress

INT in

Figure 3.9: Process diagram for suppress.int, an occam-pi process which acts as a suppressor on
channels of integers

¿e interface of a process that implements suppression is shown in Figure 3.9, and a sample
implementation in occam-pi is shown in Listing 3.1. ¿e sample implementation deals with
channels of integers, but this can be used as a template to implement such a component for
channels of any type. A boolean �ag is stored which controls whether or not the suppressor
is active, and the process continuously reads from both its usual input source (in?) and the
suppression input (suppress?). When not suppressing, inputs on in? are passed through
to out!, inputs on suppress? �ip the boolean �ag to activate suppression and then start the
timeout period. Whilst suppressing, inputs on in? are discarded and inputs on suppress?
are passed to out!, through to the process. ¿e timeout is monitored whilst suppressing and

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 75

once it has expired the boolean �ag is reset to disable suppression.

Inhibition

Inhibition of outputs is similar to suppression; to inhibit the output of a module a second,
inhibitory, wire is connected to the output port. However, when any message is sent along
this wire it prevents the usual output from the module, causing the messages to be discarded
for a �xed timeout period. Unlike suppression, where the messages take the place of the usual
input, messages on the inhibitory wire are also discarded - they do not take the place of the
usual output. ¿e second wire mutes the module, inhibiting its output.

inhibit.int
VAL INT timeout

INT out

BOOL inhibit

INT in

Figure 3.10: Process diagram for inhibit.int, an occam-pi process which acts as an inhibitor on
channels of integers

¿e interface of a process that implements inhibition is shown in Figure 3.10, and a template
implementation in occam-pi for channels of integers is shown in Listing 3.2. ¿e implement-
ation of the inhibitor shares much with the suppressor, although it can be simpli�ed as
data received on the inhibitory input channel can be discarded, whereas on the suppressing
channel of a suppressor the data must be passed on. A boolean �ag is used to track whether
the component is currently active. If the inhibitor is not active, messages on the usual input,
in?, are passed to the output, out!, and messages on the inhibitory line inhibit? set the
timeout and toggle the boolean �ag to set the component active. If the inhibitor is active,
messages from from in? are discarded, and messages on the inhibit? channel reset the
timeout afresh. Whilst active, the inhibitor also checks the current time to see whether the
timeout period has expired, and the component should be reverted to inactive.

76 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

PROC suppress.int (VAL INT timeout,
CHAN INT suppress?
CHAN INT in?, out!)

TIMER timer:
INT time:
INITIAL BOOL suppressing IS FALSE:
WHILE TRUE
INT value:
PRI ALT

-- When not active, activate on input from suppress.
NOT suppressing & suppress ? value
SEQ

suppressing := TRUE
timer ? time
time := time PLUS timeout
out ! value

-- When not active, pass data from in to out.
NOT suppressing & in ? value
out ! value

-- When active, deactivate after timeout.
suppressing & timer ? AFTER time

suppressing := FALSE
-- When active, pass data from suppress to out.
suppressing & suppress ? value
out ! value

-- When active, discard input on in.
suppressing & in ? value
SKIP

:

Listing 3.1: An occam-pi implementation of suppress.int, a process which acts as a suppressor for
channels of integers

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 77

PROC inhibit.int (VAL INT timeout,
CHAN BOOL inhibit?,
CHAN INT in?, out!)

TIMER timer:
INT time:
INITIAL BOOL inhibiting IS FALSE:
WHILE TRUE
PRI ALT

-- Enable inhibiting until timeout on inhibit signal.
BOOL flag:
inhibit ? flag
SEQ

inhibiting := TRUE
timer ? time
time := time PLUS timeout

-- Reset the inhibitor once the timeout expires.
inhibiting & timer ? AFTER time
inhibiting := FALSE

-- Let data pass from in to out when not inhibiting.
NOT inhibiting & in ? data
out ! data

-- Discard data from in when inhibiting.
inhibiting & in ? data
SKIP

:

Listing 3.2: An occam-pi implementation of inhibit.int, a process which acts as an inhibitor on
channels of integers

78 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

Process-oriented Bump and Wander with Subsumption

To demonstrate the design and composition of a process-oriented subsumption architecture
a bump and wander example program is presented. Bump and wander is an elementary
mobile robotics example, requiring the robot to navigate safely within an enclosed space.
One possible decomposition of this problem is as three tasks:

1. Move forward when there is clear space

2. Back away and turn if the path to move forward is obstructed

3. Move forward if an object behind obstructs the back away and turn behaviour

A process network for this simple bump andwander program using the subsumption architec-
ture is shown in Figure 3.11, designed for use on the Pioneer 3-DX robot platform (described
in Section 3.1.4) or a simulated Pioneer 3-DX in the RoboDeb environment (described in
Section 2.6.1).

Move forward if there is an obstruction behind.

Detect objects, turn away from them.

Move into space, stop if a collision will occur.

min.distance prevent.collision

object.detect pivot

space.behind

laser.scanner

sonar.ring

motor.controlS
10

I
1

Figure 3.11: A Subsumption Architecture-based bump and wander program for a robot with three levels
of competence.

¿e example program has three levels of competence, which correlate to our three task
decomposition of the problem and build on each other, re-using elements of the underlying
behaviours rather than duplicating logic.

1. Move into space and execute an emergency stop if too close to any object.¿is is
implemented using a pipeline of two processes: a process, min.distance, which takes

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 79

a 180○ scan of laser ranges as an array and produces a single int corresponding to the
lowest range as its output. A second process, prevent.collision, sends a stop motor
command if this value is below a threshold (20cm in this case) or a motor forward
command if the value is above. ¿is level of competence means the robot will drive
forward in its environment until it reaches an obstacle, and then stop. If the obstacle is
removed, the robot will continue moving.

2. Detect objects in the centre of the laser scan and back up to avoid them.¿is layer
is again implemented as two processes. object.detect looks at the central 90○ slice of
the laser ranges and sends amessage if an object is below the detection threshold (75cm).
pivot, on receiving a message sends a command to rotate the right motor on the robot
backward, rotating it anti-clockwise and moving the robot backward. Importantly, this
message suppresses the input to the motors from prevent.collision in the �rst
level of competence, replacing any forward or stop messages to the motor with the
back up message. ¿e robot will back up for the timeout period of the suppressor (1
second), and the lower level behaviour will resume control. However, if turning for a
second has not produced a clear path, the second level of competence will continue to
generate messages and suppress the lower level competence until a path is available.
¿is level upgrades the control system from simply driving into an area until it stops
due to proximity to actually being able to navigate around the space. However, as the
robot’s emergency stop behaviour uses the laser range-�nder at the front, the robot
backs into walls while trying to avoid obstacles in tight spaces.

3. Move forward if backing up is obstructedWhilst the previous levels of competence
used the laser scanner, it scans to the front of the robot and cannot be rotated. ¿e
robot has a number of sonar sensors around its circumference which can be used to
�nd obstacles at closer proximity.¿e space.behind process monitors four sensors at
the back of the robot and checks a minimum threshold on the distance; if this distance
is too low, it inhibits the output from the second level of competence telling the robot
to turn, meaning the �rst level behaviour of moving forward ceases to be inhibited,
and the robot moves forward slightly during the inhibitory period.

¿is three competence network allows the robot to perform multi-point turns simply by
engaging its back up and turn and lower level go forward behaviours alternately, with no
explicit statement of the composite action.

80 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

(a) Demonstrating two levels of compet-
ence, the robot is able to turn and back away
from the wall when it gets too close.

(b) Demonstrating all three levels of com-
petence, the robot backs away from the wall
and performs multi-point turns to navigate
the environment.

Figure 3.12: Simulation results when running two levels of competence and subsequently adding the
third level of competence

¿is program was designed for use on a physical Pioneer 3-DX and tested via the Stage
simulator in RoboDeb; the program executing on the physical robot is able to successfully
navigate an irregular space using laser ranging, performing multi-point turns when unable
to continue forward motion. ¿e Stage simulated environment is shown in Figure 3.12,
showing the robot’s motion trails and demonstrating the di�erence in robot behaviour as the
additional level of competence which permits multi-point turns is added. Figure 3.12(a) shows
themovement path of the robot when runningwith the �rst two levels of competence, rotating
and backing away when it encounters a wall; Figure 3.12(b) shows the robot’s behaviour when
the third level of competence is added, making successful multi-point turns to negotiate a
di�cult environment. ¿e value of the timeouts used to switch between going forward when
there is no room behind the robot and the distance thresholds used in the program must be
lower in physical environments with many tight corners. Where the thresholds or timeouts
are set too high there is a possibility of the robot getting stuck, as it is too close to walls for
both kinds of motion.

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 81

Limitations of Subsumption

Subsumption architectures have shown promise when used for robotics in occam-pi, and
the adaptations introduced by Brooks’ later work further enhance its suitability. A lack of
modularity, identi�ed by both the author and authors of other related control systems mean
that systems using the Subsumption architecture tend to run into scaling problems, due to
overly tight bindings established between behaviours inside the layers themselves.

Scaling the model of subsumption to larger systems is challenging due to the emergent
way in which behaviours are achieved through the interaction between behaviours. ¿ese
challenges are not speci�c to a process-oriented implementation of subsumption, rather
to the architecture as de�ned. In simple programs, the small number of behaviours can be
reasoned about simultaneously and there are a limited number of interaction points for
subsumptive primitives, larger systems mean these values and the complexity scale beyond
what can be maintained in the programmer’s mental model of the system. Increasingly
complex interdependencies form as higher levels of competence intercept values being
passed between individual modules in lower levels, replacing their input or inhibiting output.
¿e bump and wander program, presented earlier and shown in Figure 3.11, may be used to
identify these scaling issues.

In the bump and wander program, reasoning about the motion of the robot requires un-
derstanding of the three levels of behaviour and the interaction of the three, as each alters
the output of the previous. ¿e actions taken by the robot re�ect not only the combination
of behaviours, but the speci�ed timings in inhibitors and suppressors which control the
interaction of behaviours. Figure 3.11 shows a larger, nine level of competence subsumption
system developed by Posso which identi�ed a number of di�culties in working with the
architecture at scale in occam-pi [Pos09]. For nine levels of competence, there are twelve
suppressors and four inhibitors, all of which contain timing information and produce condi-
tional behaviour based on the sensory input to the behaviours triggering them. ¿is level
of complexity, combined with the complexity of the environment makes rationalising the
robot’s behaviour and current state extremely di�cult from observation. ¿e non-linear
scaling and complexity of interactions mean that large subsumption architectures exhibit
behaviour which is di�cult to debug without the ability to inspect the state of the running
system.

¿e interactions between behaviours mean that it is di�cult to use the standard process-
oriented approach to managing complexity, process composition, to abstract and present

82 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

sets of behaviours in isolation from the rest of the system. An abstraction containing a set
of behaviours and their interactions may abstract and hide an input or output at which a
further level of competence needs to inhibit or suppress control.

In his speci�cation of the Colony Architecture, Connell identi�es that Subsumption requires
a holistic view and correct behavioural decomposition from the very beginning of design
so as to o�er the correct inputs and outputs for higher layers to interact with [Con89]. ¿e
Colony Architecture is discussed in more detail in Section 3.3.2.

In a later paper, Brooks revises the principles of inhibition and suppression, requiring contin-
ued communication over the inhibitory or suppressing channel and the use of short delay
periods [Bro89]. ¿e implementations of the subsumptive primitives presented here need
no modi�cation to be used in this way, as the use of a much shorter timeout period will also
introduce the requirement for the channel to be consistently active to continue resetting the
timeout.

Extensions of the Work

¿e author’s work on process-oriented subsumption architectures has been extended by
Neeson [Nee08], who reimplemented an existing subsumption architecture implemented in
C++ using the process-oriented approach documented above to compare e�ciency and ease
of implementation. Neeson found occam-pi to be an “excellent environment” for the imple-
mentation of subsumption architectures, whilst expressing uncertainty about the scalability
of the approach to more complex problems.

Posso implemented a complex subsumption architecture, shown in Figure 3.13, with nine
levels of competence to determine the feasibility and ease of scaling process-oriented sub-
sumption architectures [Pos09]. Posso concludes that occam-pi is capable of implementing
complex subsumption architectures and is an “excellent environment for concurrent con-
trol” [Pos09].

Posso’s complex subsumption architecture would enter behavioural stall conditions which
were identi�ed as fundamental to the subsumption approach.¿is work was conducted using
the RoboDeb Player/Stage based simulation environment (detailed in Section 2.6.1), which
interfaces to both simulated and hardware using foreign function wrapping of a C library.
¿is interface approach and its introduction of conditions and potential problems outside
of the process-oriented environment are documented in Section 3.1.3. A combination of

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 83

brain.stem

prevent.collision

object.at.left

object.at.right

obstacle.
avoidance motors

roll.forward S S

random.rotation wander S

detect.bin
S

S

check.at.bin drop.
rubbish S

S

S

detect.rubbish goto.
rubbish S

I
S

check.at.rubbish pickup.
rubbishI

goto.bin

has.rubbish

detect.power
S

Sgoto.
power

check.at.power rechargeI

I

power.monitor

detect.robot separate

blobfinder.
cleaner

gripper.
reader

Obstacle Avoid

Wander

Go-to Bin

Drop Rubbish

Go-to Rubbish

Pick-up Rubbish

Recharge

Go-to Power

Separate

SH
AR

ED
 S

O
NA

R
so

na
r.d

at
a

BL
O

BF
IN

DE
R

ca
m

.d
at

a

G
RIPPER.DATA
gripper.stateBO

O
L

gr
ip

er
.s

ta
te

.
re

qu
es

t
MOTORS motor.control

GRIPPER gripper.control

INT battery.level

BOOL power.request

BO
O

L recharge

Figure 3.13: A Subsumption Architecture-based bump and wander program for a robot with three levels
of competence, from [PSST11]

84 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

application of an introspection tool to examine program state (as presented in Chapter 5) and
a robot platform with a more direct interface to the hardware would allow a full investigation
of the behavioural stalls identi�ed by Posso to be carried out and an understanding of the
limitations of subsumption once platform de�ciencies are isolated.

3.3.2 Colony Architecture

Connell’s Colony Architecture [Con89] is a re�nement on the early Subsumption Architec-
ture which removes explicit inhibition allowing only suppression of outputs in lower level
behaviours. ¿e Colony Architecture uses a collection of modules which are related by the
actuator they control, rather than a layered ordering across the system. Unlike Subsumption,
additional layers do not necessarily increase in competence; modules may be introduced in a
higher layer which provide more general solutions to lower-level control problems for cases
where more speci�c lower-level modules cannot establish the correct action to take. ¿e
Colony Architecture removes the Subsumption’s ability to “spy” on inputs and replace outputs
of internal modules in lower layers, enhancing the system’s modularity by only allowing the
input and output of entire layers of behaviour to interact.

¿e Colony Architecture was used on amulti-processor robot which could also run programs
written for the Subsumption Architecture.¿is multiprocessor robot used 24 loosely-coupled
processors to run a system with over 41 behaviours, with so ware scheduling like that of
Brooks’ to run multiple behaviours per processor. Both Brooks and Connell identi�ed that
the explicit parallelism of behaviours allowed the control system to scale through the addition
of more processors, maintaining reactivity and performance even with the introduction of
more behaviours.

Implementation

A retriggerable monostable primitive is added, which is used when an event (de�ned as a
single point of activity which does not persist in the environment) should trigger a behaviour.
¿e detection of these events is performed using initiation and satisfaction predicates, which
set the monostable true or false depending on the condition of the event. ¿e monostable
itself maintains a true value for a period of time, but eventually resets itself if not reset by
the satisfaction predicate, acting much like a piece of memory with a watchdog timer. ¿e
monostable is used to persist the point state from the environment, allowing it to have time

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 85

to in�uence the system even if the state ceases to exist in the environment.

Modi�cations to the Subsumption primitives involve suppression requiring continued send-
ing of messages over the control channels. Early Subsumption tended to use a single message
and long delays, whereas the Colony Architecture and Brooks’ later Subsumption both use
short delays with regular messaging along the control channel.

3.3.3 Action Selection

Maes’ Action-Selection model relies on a network of independent competence modules
and the use of activation levels to control which modules are executed [Mae89b, Mae89a].
Activation levels in the network are propagated such that an executable module primes
modules which can run a er it in a task, while a non-executable module will prime those
which run before it, causing activation to pool in the �rst behaviour in a task which is suitable
for execution. Inhibition, or con�ictor lines are connected between modules that oppose
each other’s behaviour, when a module with such a connection becomes active it inhibits the
activation of the other modules which would impede completion of its task.

Drive forward

Is there space in front?

Turn left

Goal: Navigate space

activation

activation

Figure 3.14: A set of Action-Selection competence modules to move within a space. Activation spread is
accomplished via bi-directional connections between modules, as shown.

An example of a simple robot control program using Action-Selection is shown in Figure 3.14,
a robot control program which has a goal to navigate into space. ¿e competence modules
for this program are drive forward and turn le , the drive forward module is preconditioned
on there being space in front of the robot. ¿e goal navigate space raises the activation of the
drive forward module and it will become active, moving the robot forward. Once the robot
runs out of space in front of it, the drive forward module will become inactive, as the has
space in front precondition will become false. ¿e drive forward module will then pass its
activation on to the turn le module, causing a turn until the precondition for drive forward

86 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

is true again (i.e. there is free space in front of the robot).

Implementation

Use of an Action-Selection mechanism in occam-pi is most easily achieved through the cre-
ation of a second decision-making network consisting of a number of ‘cells’ which propagate
the activation levels for each behaviour to calculate activation values for each cell. Cells which
have an activation level over their threshold can be activated if they are executable. To be
executable all of a cell’s preconditions must be met, and the decision-making network will
therefore capture all of the preconditions to allow it to arbitrate between behaviours and
activate those that should be activated. ¿ese activated cells in the decision layer trigger the
execution of behaviours in the robot control system itself, and free those control behaviours
from having to incorporate the propagation of activation or management of preconditions.
Goals are connected into the decision layer a er the last module in a behaviour that completes
them, and feed activation back through the modules responsible for completing the task
until it pools in the �rst task, raising it above the activation threshold.

Partly due to its inspiration from neural networks, the process architectures that result from
the implementation of Action-Selection are complex and require a second decision network
to make their implementation relatively neutral to behaviours.

¿e Action-Selection model detailed here di�ers signi�cantly from the Subsumption and
Colony architectures in this formulation because it does not rely on message passing or �nite
state machines. ¿e structure of the model in process-oriented programming de�ned here
takes no advantage of the communicating process model for actual control code, making
it di�cult to integrate with systems using other architectures identi�ed in this chapter, or
with the use of process-oriented hardware interfaces. ¿e need to implement a separate
neural network based decision layer from the actual robot control processes and the highly
connected nature of the decision layer adds implementation complexity that does not have
any bene�t in the process-oriented model. Arkin notes on Action-Selection in [Ark98] that
“no evidence exists of how easily the current competence module formats would perform in
real-world robotic tasks”, due to lack of implementation on actual robot platforms.

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 87

3.3.4 Motor Schema

Arkin’s Motor Schema approach to control uses multiple concurrent schemas (behaviours)
active during the completion of a high level task [Ark87]. Two types of schema are employed
in the architecture: motor and perceptual. Motor schemas are behaviours that control the
motion or activity of the robot, such as stay on path or avoid obstacles. Perceptual schemas
identify features and conditions in the environment that provide data necessary for a given
motor schema to function, for example �nd terrainmight supply a clear path vector to stay
on path. In Arkin’s system, multiple schemas may e�ect action at the same time, and these
actions are merged through vector addition of potential �elds.

Groupings of perceptual and motor schemas which achieve a given task are known as as-
semblages. Some assemblages may be present throughout the entire runtime of the control
program, such as those that provide emergency stop or hazard avoidance facilities. Addi-
tionally, a planner module may load and unload di�erent assemblages based on the input
from the perceptual schemas connected to it. ¿is mechanism provides e�ective re-use of
components, as parameterised perceptual and motor schemas can be used across multiple
assemblages.

To illustrate the Motor Schema approach, an example program is presented in Figure 3.15,
written for the LynxMotion AH3-R Hexapod robot discussed in Section 3.1.7. ¿e sample
program shown in Figure 3.15 has two assemblages which are loaded constantly: one to detect
body tilt (detect.tilt) and keep the robot level and another to detect obstacles in the path
of the robot (detect.obstacles) and generate a vector away from them. ¿e planner is
able to load additional assemblages based on perceptual schemas which are connected to it.
In this case two perceptual schemas are connected to the planner: one to detect lateral motion
(detect.lateral.motion) which loads an assemblage to move towards (investigate)
the source of the motion, and another which loads an assemblage which backs away from
the source of the approach (detect.approach). ¿e state machine for the planner is shown
in Figure 3.16.

Motor Schemas provide the reactive component of Arkin’s Autonomous Robot Architecture
(AuRA), which combines the aforementioned planner with a spatial reasoner and other
deliberative levels of function [AB97].

88 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

Planner State

detect.tilt balance

∑
motor.sum

detect.obstacles avoid.obstacle

detect.lateral.motion

detect.approach

Planner

Active planner task: Move toward moving object on lateral motion.

motion.track move.toward

Inactive planner task: Back away from something approaching

motion.track back.off

Key

Perceptual Schema

Motor Schema

Active Schema

Figure 3.15: A motor-schema based control program to navigate a robot to investigate motion and run
away if approached.

Implementation

¿e key primitive for the implementation of Motor Schemas is the vector sum, an imple-
mentation of which is shown in Listing 3.3. ¿e example provided is suitable for controlling
motion in a 2D plane, it is straightforward to add more components to allow control in a 3D
space (x,y,z), allowing the system’s behaviours to in�uence height or tilt. ¿e planner in a
Motor Schema based system is a custom-built state machine which uses perceptual schemas
to determine when to change between states.

PROTOCOL VECTOR IS REAL32; REAL32:

PROC motors (VAL []REAL32 gain, CHAN []VECTOR in?)

MOBILE []REAL32 x, y:

SEQ

x := MOBILE [SIZE in]REAL32

y := MOBILE [SIZE in]REAL32

3.3. PROCESS-ORIENTED ROBOT ARCHITECTURES 89

Wait for
motion

Back off

Move
toward

Start

approach = 0

approached

lateral motion

lateral motion = 0

Figure 3.16: State machine of the planner for an example control program using Motor Schemas which
investigates motion and runs away if approached.

SEQ i = 0 FOR SIZE in

x[i], y[i] := 0.0, 0.0

WHILE TRUE

INITIAL REAL32 x.v IS 0.0:

INITIAL REAL32 y.v IS 0.0:

SEQ

ALT i = 0 FOR SIZE in

in[i] ? x[i]; y[i]

SEQ

x[i] := x[i] * gain[i]

y[i] := y[i] * gain[i]

SEQ i = 0 FOR SIZE in

SEQ

x.v := x.v + x[i]

y.v := y.v + y[i]

-- drive motors ...

:

Listing 3.3: An occam-pi implementation of the vector sum primitive which allows for the control of
motion in a 2D plane.

90 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

Arkin’s Motor Schemas o�er a method of command fusion which is simple and e�ective,
matching with our typical use of process-oriented programming in robotic control and
providing �exibility for the di�erent kinds of motion possible on a variety of robot platforms.
In the context of the wider AuRA architecture, the �nite-state machine based planner and
re-use of perceptual schemas make this approach to control modular and �exible, allowing
both deliberative and reactive behaviours to be expressed in the same way.

3.3.5 Distributed Architecture for Mobile Navigation

Rosenblatt’s Distributed Architecture for Mobile Navigation (DAMN) combines independ-
ent, asynchronous modules with arbiters performing command fusion via a voting mechan-
ism [Ros95]. ¿e overall goals of the system are prioritised via the weighting of votes placed
by each module. Arbiters make a decision on the set of votes which have been received within
their time step. ¿is provides asynchronous operation of system components and allows
behaviours to be a mix of deliberative and reactive modules, emitting decisions at di�erent
rates. Arbiters in DAMN o�er a set of commands to behaviours; a steering arbiter might
o�er varying degrees of turn and the behaviour modules would then be able to vote on each
possibility. Votes made by behaviours are normalised, and the choice which has the highest
vote amount is chosen to occur.

Modules

Seek lateral
motion

Back off when
approached Balance Avoid

obstacles

DAMN Arbiter
Robot

Controller

Move awayMove toward

Detect lateral
motion

Detect
approach

votes votes
commands

Figure 3.17: A DAMN based control program to navigate a robot to investigate motion and run away if
approached. ¿e arbiter sends commands to the robot itself based on the votes made by behaviours.

Arbiters may be connected to an adaptive mode manager, allowing the weighting of di�erent
behaviours to be changed while the system is running. A mode manager such as SAUSAGES
altering the vote weightings allows for sequential action [Gow94]. For example, a robot might

3.4. DISTRIBUTED ROBOTICS ARCHITECTURES 91

have a primary stage of operation where it locates all target objects (so -drink cans, red
balls or similar) and a secondary stage where it retrieves all of those target objects. A mode
manager would �rst weight highly all of those behaviours responsible for the target �nding
abilities, then reduce those weights and increase those to the behaviours responsible for
retrieving the objects.

A process network decomposition for a DAMN architecture is shown in Figure 3.17. It
performs the same task as the earlier example implemented using a Motor Schema approach,
using the six-legged walker to approach moving objects and back away from objects that
approach it.

Implementation

¿e development of process-oriented DAMN-based robot control systems requires the
implementation of arbiter processes for each actuator to be controlled by the system. Each of
these arbiters will o�er appropriate choices for actions to take with the actuator that they
control to the behaviour modules of the system.

Where Motor Schemas o�er a blending approach to resolving the action of many behaviours
into one coherent choice, Rosenblatt’s DAMN allows the use of an arbitration-based approach.
Behaviours vote on potential actions and decide on the correct action to take via a centralised
arbiter, customised for the potential actions that can be taken for each e�ector. DAMN
provides a framework which can exploit message passing for decision making without the
implementation overhead and connection complexity of a neural network, whilst allowing
complete freedom to the internal structure of the voting behaviours. ¿e asynchronous
nature of DAMN also allows a seamless combination of deliberative and reactive components
each working at their own frequency, with the relative proportion of their inputs able to be
counteracted through weighting. An AuRA-like planner or other mode manager could also
easily be used to provide sequential or adaptive behaviour, providing a coherent framework.

3.4 Distributed Robotics Architectures

Modern advancements in robotics so ware architecture have moved toward providing
middleware which facilitates the composition of systems composed from components co-
ordinating via communication using well de�ned interfaces. ¿ese middleware systems

92 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

possess many of the advantages of process-oriented programming, although these advantages
are present mostly at the coarse-grained component level rather than in the actual program
components themselves.

¿e use of middleware architectures re�ects the current state of so ware in general; o en
rather than building an entire system from scratch, programmers are required to integrate a
number of established and well tested libraries designed for speci�c tasks along with custom
logic into a coherent system.¿e use of a communication middleware is designed to promote
the development of reusable best of breed components for a single task which may be used
across robot systems. A variety of robotics middleware packages exist; the Robot Operating
System (ROS)[QCG+09] has received signi�cant attention from both academia and industry,
while others such as Player [GVH03], YARP [FMN08] and Urbi [Gos08] o�er similar co-
ordination models combined with additional support for robotics or speci�c types of robots.
ROS, in comparison, focuses primarily on providing only the tools needed to construct, run
and debug programs, leaving robotics tasks to components within the program itself.

ROS provides a so ware framework for robotics based on distributed systems principles,
permitting ‘nodes’ written in di�erent programming languages and running on di�erent
physical hosts to communicate to form an overall system. ¿is framework is designed to be
lightweight, consisting only of a communications fabric to facilitate discovery of and commu-
nication between nodes. ROS contains two mechanisms by which nodes may communicate:
a publish-subscribe asynchronous mechanism and a synchronous request-response model,
allowing the programmer to choose the most appropriate form of communication for the
transaction between two given nodes.

As both ROS and process-oriented programming involve individually executing compon-
ents co-ordinating via communication they share the advantage of being able to build up
programs compositionally, adding new and untested components alongside existing, well
tested, components. However, as ROS is middleware, both the individual processes and
communication are heavyweight compared to processes and message passing constructs in
programming languages such as occam-pi or Erlang. Each process is a fully-�edged operating
system process, networks of which are set-up via an XML con�guration �le which controls
process instantiation and appropriate connection between processes.

¿e �exibility and power of message passing frameworks like ROS comes with a price; writing
a so ware component requires the programmer to understand the communication model
and distributed systems concepts surrounding its incorporation into a wider system. ¿ese
communication and co-ordination elements introduce additional complexity when reasoning

3.5. CONCURRENCY PATTERNS IN ROBOTICS 93

about the entire system, asynchronous communication means that the system state is the
combination of both the current activity of individual components and any messages le
unprocessed in bu�ers. Due to the �exibility of these frameworks and the common transports
used, a number of them are able to interoperate, allowing components written for a particular
framework to be used under or interact with another. Player, for example, is able to connect
to a YARP component to retrieve image data while YARP itself is able to interoperate with
ROS, allowing the use of a mixture of YARP and ROS components in a single system.

In the light of these modern architectures, process-oriented programming enables the applic-
ation of �ne grained-concurrency at the component level, extracting performance bene�ts
of parallel hardware and provide a consistent environment between the high level program
architecture and component implementation. However, while process-oriented program-
ming provides a message passing environment, interfacing into third party libraries typically
requires technically complex and carefully designed interface code to avoid causing concur-
rency errors at the interface boundary (as discussed in Section 3.1.3).

3.5 Concurrency Patterns in Robotics

Process-oriented robot control programs in occam-pi prior to thework published in this thesis
primarily consist of freeform process decompositions according to the techniques used for
process-oriented programming. ¿is thesis has presented the application of existing design
principles for behavioural robotics architectures to process-oriented robotics. Inversely, there
is signi�cant value in applying design patterns and principles for process-oriented concurrent
systems to robotics. ¿ese principles are captured in the introductory concurrency course at
the University of Kent where students begin by working with Welch’s elementary ‘Legoland’
processes, a set of fundamental building blocks for building data �ow systems which can be
used to teach basic design patterns for process-oriented programming. ¿ere are a number
of established patterns for designing process-oriented systems that have arisen out of the
years of experience at the University of Kent and elsewhere; a complete set of these patterns
is de�ned and speci�ed in Sampson’s Doctoral ¿esis [Sam08].

¿e author along with collaborators presented a workshop called “Patterns for Concurrency”,
introducing ten professional embedded systems developers to the process-oriented model
of concurrency using these design patterns [JSJ08]. ¿is nine-hour course set all of the
educational material in the environment of writing programs for the LEGO Mindstorms

94 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

RCX, starting with the fundamental principles of process-oriented programming: channel
declaration, communication over channels and creating parallel processes. ¿is course con-
cluded with a review questionnaire in which the participants were asked about their opinion
of the workshop and the e�ect of the workshop on their practice. Of ten developers attending
the course, all said the workshop was a good use of time; eight out of ten said they le with
new perspectives that would in�uence their practice and planned to experiment further with
the tools and materials provided.

3.6 Process-oriented Robotics: A Comparative Case Study

To evaluate the application of process-oriented programming for robotics a case study robotics
task was designed for the Surveyor SRV-1 mobile robot. ¿e SRV-1 is a useful platform for
comparative work; the manufacturer supplied �rmware and hardware interface for the robot
is written in C and a fully process-oriented �rmware and hardware interface has been created
for the SRV-1 by the author and collaborators (as presented in section 3.1.6).¿e robot control
program was �rst implemented in the imperative model using C, with the program compiled
into and using the hardware interface of the manufacturer robot �rmware. A subsequent,
process-oriented implementation was completed using the hardware interfaces provided by
the replacement Transterpreter and occam-pi-based �rmware with the program loaded at
runtime over-the-air.

3.6.1 Problem De�nition and Experimental Setup

An environment was created in which the robot faces a light coloured wall with a black
rectangle target placed directly in front of the robot, shown in �gure 3.18. As the robot
approaches the wall and target, the dark target area �lls more of the camera’s �eld of view,
reducing the luminescence values in the frame; once the luminescence values reach or drop
below a pre-calibrated threshold the robot should stop.

¿e robot program is calibrated at an initial �xed distance away from the wall and target,
taking eight samples of the light level and using the maximum value as the threshold. Once
this value has been set, the robot is placed at a ‘start point’, a �xed distance further away from
the target, shown on �gure 3.18 as the start point.¿e robot program waits until the light level
rises from its initial calibration (i.e. the robot has been moved from the calibration/stopping

3.6. PROCESS-ORIENTED ROBOTICS: A COMPARATIVE CASE STUDY 95

Light-coloured Surface

Dark Target Area

SRV-1

Calibration & Stop Point

Start Point

SRV-1

Camera FOV

Figure 3.18: Diagram showing experimental test using camera light level detection to establish the
reaction time of the control system

point to the start point) before triggering a delay period, allowing time for the robot to be
accurately positioned. Given the �eld of vision of the camera and the SRV-1’s speed of motion,
a stopping and calibration distance 15 centimetres from the target was used, with the starting
point a further 20 centimetres away. Once the delay has elapsed the robot drives forward at a
speci�ed speed, stopping the motors once the light level reaches the pre-calibrated value; the
robot’s reaction time and the deceleration of the robot will be exhibited as the distance past
the calibration point that it travels before actually stopping.

¿e task is speci�cally designed to test the performance of the virtual-machine based approach,
tying conditions sensed via camera data to motor control and observing a reaction. As the
two �rmwares share no common code, a physical calibration is used to avoid di�erences in
hardware initialisation or hardware interface producing di�erent behaviours given a constant
numeric value. ¿e light level is established from the camera by taking the brightness values
of 64 pixels evenly spaced across the frame. Before the initial threshold setting phase of
the program, the camera’s auto adjustment for white balance and exposure run for several
seconds and then disable the automatic adjustments. Disabling automatic adjustments is
necessary to be able to use the camera to sense brightness, otherwise the camera would adjust
for changes in lighting and the values sent to the program would be inconsistent.

96 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

3.6.2 Implementation Properties

As the C implementation of the robot programmust replace the robot’s �rmware entirely, the
entry point of the program must initialise the robot hardware; the occam-pi implementation
can avoid all of the generic setup and is provided a high-level channel communication inter-
face to perform program speci�c hardware con�guration.¿e implementation of an occam-pi

hardware interface as set out in Section 3.1.2 drives this high level approach, modeling the
hardware as a communicating component rather. An example of this di�erence in abstraction
is the camera on the SRV-1. ¿e Surveyor’s C �rmware directly accesses memory storing the
camera frame, reading image data directly from the memory it is written into by the physical
hardware, whereas the occam-pi �rmware passes a message once an entire frame is ready,
along with a reference to the frame data.¿e latter approach provides a high level abstraction
under which the camera can be reasoned about as a series of frames, rather than a memory
bu�er being continuously written to.

¿e main method of the C implementation is shown in Listing 3.4. ¿e control logic con-
sists of an initial calibration phase, then a loop performing the main task inde�nitely. ¿is
main task loop relies on two further loops encapsulated within the wait_for_dark and
wait_for_light functions, which encapsulate responsibility for detecting these conditions
in the environment, looping and only returning when the conditions are found.¿e top-level
process (TLP) of the process-oriented implementation, the occam-pi equivalent of a main
method in C, is shown in Listing 3.5. In comparison to the C, which relies on a main in�nite
loop and individual loops wrapped in functions to block program execution, the occam-pi

program contains an in�nite loop inside each of the processes set up in the TLP; blocking in
the process-oriented model is achieved via communication. ¿e concern of co-ordinating
the execution of the two tasks is mixed with the concerns of the actual robot behaviour,
adding complexity to the program and making it more di�cult to extend to support further
behaviours.

¿e process-oriented implementation of the robot program consists of four processes execut-
ing in parallel:

• get.image con�gures the camera’s automatic adjustment settings, then sends entire
frames from the camera as byte arrays of pixel data on its output.

• avg.luma receives camera frames and gets the brightness values of the 64 point pixels
used in the image and outputs a single brightness value for each frame it receives.

3.6. PROCESS-ORIENTED ROBOTICS: A COMPARATIVE CASE STUDY 97

static void wait_for_dark(int level) {
int luma;
do { luma = get_luma(); } while (luma > level);

}

static void wait_for_light(int level) {
int luma;
do { luma = get_luma(); } while (luma <= level);

}

int main() {
initialise_hardware();
int threshold = 0;
int i;
for (i = 0; i < 8; ++i) {

int luma = get_luma();
threshold = luma > threshold ? luma : threshold;
delayMS(200);

}
for (;;) {

uart0SendString((unsigned char *)"delay"); uart0SendChar(’\n’);
delayMS(8000);
uart0SendString((unsigned char *)"start"); uart0SendChar(’\n’);
wait_for_light(threshold);

uart0SendString((unsigned char *)"delay"); uart0SendChar(’\n’);
delayMS(8000);

setPWM(100, 100);
wait_for_dark(threshold);
setPWM(0, 0);

uart0SendString((unsigned char *)"stop"); uart0SendChar(’\n’);
}

}

Listing 3.4:¿e main method of the imperative robot program implementation, containing the
control logic, and the two functions used to detect environmental conditions: wait_for_dark and
wait_for_light.

98 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

PROC stop.when.dark (
CAMERA! camera, CONSOLE! console,
LASER! lasers, MOTOR! motors
SYSTEM! system

)
CHAN MOBILE []BYTE frames:
CHAN BOOL dark:
CHAN INT luma, ctl.luma:
PAR

get.image (camera, frames!)
avg.luma (frames?, luma!)
is.dark (luma?, dark!)
control.motors (dark?, motors, console)

:

Listing 3.5: Top-level process de�nition for the occam-pi process-oriented implementation of the case
study program

• is.dark receives brightness values, using the �rst eight values it receives to set the cal-
ibrated threshold, then checking the brightness value against the threshold to generate
a boolean as to whether the value exceeds the threshold.

• control.motors receives boolean values specifying whether the threshold has been
reached, and stops the motors if it has. ¿is process is also responsible for writing state
to the console.

A process network diagram of the implementation is shown in �gure 3.19; the program
implements a ‘pipeline’ pattern between its components, re�ning from camera frame to
brightness value to boolean threshold value. ¿ree hardware interface channels are used by
the program: camera, console and motors; these channels expose the same functionality
as the calls to �rmware functions in the C, but have the advantage of grouping together
relevant functionality via protocols rather than having to rely on naming convention like the
uart0Send pre�xed console functions in the C.

3.6.3 Evaluation

Each test run of the program �rst required the robot to calibrate a brightness threshold value
at the desired stopping point. ¿e program was then allowed to loop ten times over the
main control logic, driving forward and attempting to stop at the original point identi�ed

3.6. PROCESS-ORIENTED ROBOTICS: A COMPARATIVE CASE STUDY 99

Firmware stop.when.dark

get.image avg.luma

control.motors is.dark

camera

motors
BOOL dark

MOBILE []BYTE frames

console
CONSOLE console INT luma

MOTOR motors

CAMERA camera

Figure 3.19: Process network of the occam-pi case study robot program including its interaction with
�rmware processes.

by brightness; the distance the robot travelled past the original point was recorded with
each attempt. ¿is distance encompasses both the robot’s reaction time, to identify the
condition in the environment and command the robot to stop, and the time taken by the
physical deceleration of the robot; the physical deceleration should be constant between
both implementations as the motors were driven at the same speed. ¿e SRV-1 is rated at a
speed of 20-40cm per second depending on the surface it is travelling on; in the case of the
experiment a speed of around 20cm per second was observed.

Implementation Distance (cm)

Process-oriented (occam-pi) 6.67 ±0.362

Imperative (C) 8.46 ±0.395

Table 3.1: Average reaction and stopping distance of the robot (to 3 s.f., with 95% con�dence interval)

¿ree test runs were conducted with each implementation of the program the results of
which are shown in table 3.1. Unexpectedly, the process-oriented implementation of the
control program managed to stop more quickly (i.e. in less distance) than the imperative C
implementation.¿e belief of the author is that this is due tomore e�cient implementation of
the underlying hardware interface functions in the process-oriented �rmware. ¿ese results
show that the virtual machine runtime and interpreted hardware interface are comparable
in performance to typical native code. In this case study the bene�ts of being able to use
concurrency to structure the robot program were able to be employed, even in the absence
of parallelism, to no signi�cant detriment in the measured performance of the robot.

100 CHAPTER 3. PROCESS-ORIENTED ROBOTICS

3.7 Conclusions

Further exploration of hybrid approaches, using multiple architectures in the homogenous
process-oriented environment may yield useful combinations for solving particular prob-
lems. A library of components for building programs using di�erent architectures would be
greatly bene�cial in the context of a visual robotics programming environment (such as that
discussed in Chapter 4). Further extension work is presented in Section 6.1.

Multiple, parallel control paths through a behavioural robotics systems mean that individual
components need less information about the environment and can be simpler — re-use of
components is possible, as data can be routed appropriately through the network from sensor
processes. Ideally it should be possible to add new behaviours to a robot without a�ecting the
existing ones, whilst still re-using the elements of those behaviours that are relevant to the
new behaviour. Achieving this using architectures like subsumption requires careful thought
when decomposing behaviours into individual modules that carry out speci�c functions, as
only modules that are su�ciently generic can be re-used. ¿ese decomposition skills are also
practiced when writing process-oriented programs, the clearest expression being of a large
number of individual components that each do only a single thing, composed to perform
complex tasks.

Chapter 4

A Demonstrator Environment

¿is chapter presents a visual programming tool for process-oriented robot programming
with occam-pi, designed to allow early diagram-only explorations of concurrent program-
ming, and demonstrating the principles of process composition.

Diagrams are an important tool in the methodology of designing and implementing process-
oriented programs. When teaching concurrency using process-oriented programming at
the University of Kent students start with exercises where they reason conceptually with
diagrams about connected networks of processes and communications between them. ¿is
approach encourages high-level thinking and reasoning about the problem decomposition
and program architecture over language speci�c matters of syntax and run-time environment.
Emphasising the continued use of diagrams to prototype and design concurrent programs is
di�cult, they are isolated from the program code they represent. Current practice means
students either draw their diagrams on paper and discard them, or use a diagramming tool
and update the diagram and program code in relation to each other.

Experienced process-oriented programmers use diagrams in both program design and re-
factoring, identifying and reasoning about the parallel decomposition and communication
patterns of the system. ¿e isolated environment of a process, with no side-e�ecting op-
erations or global state, makes implementing the body straightforward once an interface
to the rest of the program and purpose are de�ned (Section 2.4.1 further discusses this
methodology).

In addition to application for process-oriented programming, diagrams have a history of
being applied to the expression of robot control programs. Flowcharts in particular have
been popular, as they are a commonly understood formalism for specifying human processes;

102 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

it is natural to mirror this onto an autonomous entity following processes to complete tasks.
In educational robotics the LEGOMindstorms RCX and NXT series of robots have gained
signi�cant popularity and both use visual programming languages to write control programs.

¿ese established applications of visual programming to both process-oriented programming
and robotics motivate the creation of a tool for building process-oriented robot control
programs visually. While diagrams cannot capture the entire semantics of process-oriented
programs, meaning textual programming is still required alongside diagram manipulation
for many tasks, they are able to capture process instance creation, process composition, and
channel creation. ¿is subset of abilities is enough for explorations of building networks of
prede�ned processes, such as the Braitenberg Vehicles previously introduced in Section 3.2.
¿is process exercises the fundamental concepts of process-oriented design: process creation,
channel creation and network de�nition.

¿e relationship between diagrams and textual program code is an important one; tools
which do not have an equivalence between the visual environment and textual form of the
program either require the programmer to consult both elements of the program or work
entirely graphically (in the case of purely visual environments). ¿e text-based programming
model has knowledge, tool support, and �exibility built up over decades; it is reasonable to
expect that all programmers will spend time working in and gain knowledge of a text-based
environment. ¿e strength of textual programming is in expressing sequential logic as a
series of statements, conversely a weakness in visual programming models. Using textual
programming for sequential code while moving high level component isolation and design
to a visual diagram-based approach plays to the strengths of both models. ¿e equivalence
between the program structure in a process network diagram and the textual code to connect
the network allows bidirectional reasoning about the model.

4.1 Visual Expression of Process-oriented Programs

Box and arrow diagrams are a lowest common denominator form in expressing the relation-
ship between components, and use a very small and widely used set of visual elements. ¿ese
diagrams can be found throughout Computer Science, from technical publications and o�ce
whiteboards to rough sketches on the back of napkins. ¿eir informal, unstructured nature
makes them a lightweight and popular way of exchanging ideas about so ware design. Slight
specialisation of the box and arrow diagram yields the �owchart, a structured diagram for

4.1. VISUAL EXPRESSION OF PROCESS-ORIENTED PROGRAMS 103

expressing processes and algorithms that has its roots in mechanical engineering.

Goldstine and von Neumann pioneered the use of �owcharts for expressing the design of
computer programs [GvN63], of which an example is shown in Figure 4.1. More advanced,
domain speci�c diagramming languages such as UML have emerged which encapsulate
more information about program code, to the point where they can be used as models for
code generation and program analysis. Diagrams produced using these languages contain
a signi�cant amount of extra information but require understanding of additional visual
formalisms — a disadvantage when considering their approachability and application in
introductory contexts.

Figure 4.1: An early �owchart expressing a computer program, from Goldstine and von Neu-
mann [GvN63]

Data�ow programming models, like process-oriented programming, are particularly suitable
for the use of box and arrow diagrams as a design tool due to the isolation of components
and the explicit �ows of information between component boundaries. Boxes map directly to
components or processes and the arrows to the directional exchange of data between those
components. Data �ow diagrams also have a harmony with the fundamental model of a
robot, sensing the environment (input), using the input in computation (processing), and
e�ecting state change in the world (output).

Process network diagrams add a minimal amount of extra annotation and semantics to
the box and arrow diagrams to provide extra value in allowing clear communication of the
design of a parallel program composed of processes and channels. A process network diagram
shares properties of a data �ow diagram, showing the communication path of data between
components throughout the system. ¿ere are a number of extensions to the basic box and

104 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

arrow diagram format to express additional, advanced features beyond process and channel
communications in process-oriented programs. ¿ere is no formal speci�cation for process
network diagrams, likely due to their close relationship to unformalised and unstructured box
and arrow diagrams. Any commonality between diagrams has occurred organically, through
the need for common communication and understanding. ¿e visual representations for a
relatively standard component like a barrier synchronisation is far more consistent than less
commonly used occam-pi features like channel mobility, and process mobility. ¿e subset of
diagram representations used by introductory programmers are typically limited to processes
and channels, the visual representations which are most mature.

4.1.1 Drawing Process-oriented Programs

¿ere is no formal standard or publication de�ning the representations used in process
network diagrams. Documenting community practice and identifying key features of each
primitive’s representation forms a basis from which to establish visual language design
principles. Process network diagrams throughout the literature and even within a single
research group of process-oriented programmers at the University of Kent exhibit a wide
variety of diagram styles. ¿ese styles show in�uence by the diagramming tools (or lack
thereof) used, personal preferences in representing speci�c components or design patterns
and some degree of common practice. Sampson collects a number of styles encountered at
the University of Kent and elsewhere in [Sam08], reproduced in Figure 4.2.

Patterns and trends in the use of diagram elements used to represent process-oriented
primitives have emerged, which can be used to establish a generalised visual form for these
diagrams.¿e variation between symbols used to represent a primitive increases as the usage
of that primitive becomes less common — newer or less popular language features have less
established consensus on their representation.

Choosing to implement a visual language based on common practices of diagram use is
pragmatic. By building on the commonalities of existing diagrams, the visual language
of the tool is immediately informed by several decades of visual communication of such
systems in the literature. An alternate approach would involve creating a visual language from
scratch, based on mental models of process-oriented programs and principles of cognition
for diagrams. Blackwell and Engelhardt propose a taxonomy of diagram research which
shows the breadth of research involved in such a task [BE02]. ¿is approach would be an
interesting area of future research and complimentary to a design approach based on user

4.1. VISUAL EXPRESSION OF PROCESS-ORIENTED PROGRAMS 105

Figure 4.2: A variety of process network diagram styles used in the Concurrency Research Group at the
University of Kent and in the wider process-oriented programming community, from [Sam08]

studies, both of which are detailed as potential extensions to this work, in Section 6.2.1.

Processes

Processes are typically represented by rectangular boxes, with a label stating the name of
the process. Other shapes and symbols are sometimes used where conventions have been
established. occam-pi course material used on the introductory course at the University of
Kent typically uses triangles for delta (duplicate one input channel onto two outputs) and
plex (multiplex two input channels onto a single output channel). ¿e diagrams presented
when discussing the subsumption architecture earlier in this thesis (Section 3.3.1) use circles
for suppression and inhibition processes to echo the original diagrams the components are
based on.

¿e amount of information captured about a process inside the box varies depending on the
purpose of the diagram. Some high level diagrams may just contain the name of the process,
although it is usual to include any parameter values supplied to processes for diagrams
representing the design of programs. Where a process is a composition of other processes it

106 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

process.composition

process process.param
(13)

delta

Figure 4.3: Visual representations of processes

is drawn as a containing box around the composed processes with its own name o�set, as
shown in Figure 4.3. ¿is is also observed around entire programs when diagrams include
the named ‘top level’ process and the interfaces to it provided by the run-time (equivalent to
a mainmethod in C or Java).

Channels

Channels are represented by directional arrows, drawn from writing end (where a process is
connected to output to the channel) to reading end (where a process is connected to input
from the channel) and may be labeled with the channel name, expected data type to be
carried or both. ¿ere are two kinds of channels which have special visual representations:
shared channels and channel bundles. Figure 4.4 shows a range of visual representations for
channels.

channel.name channel.name

INT

channel.bundle

BUNDLE.TYPE

shared.channel

shared.channel

Figure 4.4: Visual representations for channels

Shared channels may have reading ends, writing ends or both shared; for shared channels
where a single direction is shared the representation is typically a number of arrows in the

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 107

shared direction adjoining one larger, thicker arrow representing the single end. Where both
ends are shared, a single thick line is used and both sets of arrows connect to the line.

Channel bundles are prede�ned collections of channels which can be instantiated as a group
using a single type. Channels inside a channel bundle may go in both directions, and the
bundle itself has a positive/negative end to de�newhichway round the entire bundle connects.
Channel bundles are typically drawn with the positive end as an arrowhead and the negative
end as a �lled sphere.

4.2 Existing Visual Programming Environments

As stated in the introduction to this chapter, both process-oriented programming and robotics
have been the subject of previous work and interest in use of visual programming. Surveying
the existing and historical environments available for robotics and process-oriented pro-
gramming allows the identi�cation of strengths and weaknesses of existing tools, such as
visualisation methods and any particular features which may be desirable in a demonstrator
tool.

4.2.1 Visual Programming for Robotics

¿e application of visual languages to robotic control was given signi�cant attention by
academia during the 1996 and 1997 competitions at the Symposium on Visual Languages,
promoting the use of visual languages in robotic control. E�orts leading directly from the
contest led to the development of experimental visual languages for robotics. Commercial
factors have also driven the development of visual programming environments. ¿e LEGO
Mindstorms RCX and NXT series of robots has had a signi�cant in�uence in promoting
visual programming languages for robot control, having included several visual languages
as the only supplied environments. ¿e Mindstorms RCX was supplied to education with
two di�erent programming environments, RCX Code (based on the Logo Blocks model,
discussed in Section 4.2.1) andRoboLab (based onNational Instruments’ LabVIEW, discussed
in 4.2.1). Microso have entered the robotics environment market with a visual language
based Robotics Developer Studio (RDS) which was introduced to provide a control solution
for the growing number of mobile robots.

Whilst some of the tools covered in this section are outdated, speci�c to robots other than

108 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

the ones used in this work or unavailable for current use their design and feature set serve to
inform the design of the demonstrator tool.

LEGOsheets

An early, rule-based environment called LEGOsheets allowed users to build a representation
of a LEGO robot and con�gure its behaviour based on simulated “cables” connected to
virtual sensors with user-supplied values [GIL+95]. LEGOsheets was developed on top of the
general-purpose Agentsheets framework designed to simplify the development of grid-based
agent environments, with components written in Common Lisp [RS95]. ¿e use of external
connections into the development environment to receive values from virtualised sensors
and simulate actuation of outputs at development time allows for a single environment for
program development and testing, potentially very useful in the classroom with a simulated
robot environment.

Visual Behaviour-based Language (VBBL)

Cox et al. [CRS98] made use of a visual object-oriented data-�ow language called ProGraph
to develop Visual Behaviour-based Language (VBBL), a rule-based visual language making
use of �nite state machines (FSMs). ¿ese FSMs are de�ned with each state being a set
of behaviours; the system uses conditions and message �ows as events which control the
transition between states. ¿e underlying ProGraph language facilitates the use of message
passing between components, but has a disadvantage in that all components are programmed
entirely graphically.¿ere are two di�erent visual languages used: a �owchart based language
used for sequential logic in method implementation and a graph-style diagram used for
expressing data �ows between components.

Improving on VBBL, Cox et al. proposed a visual programming environment based on
representations of the actual robot itself, similar to LEGOsheets, noting that VBBL could be
improved by leveraging “the obvious visual representations” of objects instead of focusing
on the visualisation of abstract control concepts [CS98].

A second, improved environment allowed for the creation of robotic control programs
throughdirectmanipulation of a user-speci�ed simulated robotwithin a de�ned environment,
prompting for the speci�cation of behaviour when unknown combinations of sensor input
were encountered at runtime. ¿is approach reduced complexity and avoided the manual

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 109

user creation of �nite state machines. Having separate behaviours allowed for the concurrent
execution of eachwithin a subsumption architecture, albeit onemissing the ability to prioritise
behaviours over one another. Requiring the full speci�cation of the robot’s environment limits
the utility of the model for problems outside simulation, as the physical world represents an
inherently unknown environment. ¿e hardware de�nition module (HDM) model de�nes a
robotics platform as a programming target by composing classes of objects into a graphical
and functional representation of the robot and its abilities.

¿e concept of hardware de�nition modules maps directly into our approaches with occam-

pi robotics, using processes to represent hardware on the robotics platform which can be
connected into process networks as required, providing a coherent model for specifying
interfaces to and con�guration of hardware from within the program. ¿is model is particu-
larly useful on recon�gurable robot platforms such as the LEGOMindstorms RCX or NXT
and its application is discussed in Section 3.1.5.

Logo Blocks

Logo Blocks [Beg96] was a visual language based on Logo and designed for use with the
antecedent to the Mindstorms RCX; the Programmable Brick, designed by Resnick et
al. [RMSS96]. A lineage of visual programming tools can be traced back to Logo Blocks’
visual model of sequential program construction through interlocking puzzle pieces; these
puzzle pieces �t into each other to build up statements from individual pieces of program
grammar. Figure 4.5 shows Logo Blocks with a program being constructed.

¿e LEGOMindstorms RCX was supplied at retail with the RCX Code environment, which
used a visualisation based on that of Logo Blocks, constructing sequential code using com-
ponents which slotted together like puzzle pieces. ¿e history of the Mindstorms RCX and
the programmable brick are described further in Section 2.5.

Scratch [MBK+04] and StarLogo TNG [BK07] use virtually identical visual programming
models to Logo Blocks. Scratch is an environment focused on enabling children to create
programs which use media, networking and rich interaction, building “animated stories,
games and interactive art” [MBK+04]. StarLogo TNG is a graphical programming environ-
ment which lowers the learning curve to creating 3D games, allowing this area to be used
as motivation with schoolchildren learning to program [BK07]. ¿e principles behind the
Logo Blocks visual model have been wrapped into a Java library called Open Blocks allowing
their wider use. Open Blocks wraps the Logo Blocks visual programming model into a

110 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

Figure 4.5:¿e Logo Blocks environment with a program constructed, from [MIT02]

general purpose Java library for use by application developers to provide other programming
language implementations [Roq07].¿is library has been employed in Google’s App Inventor
for Android, now maintained as the MIT App Inventor, a tool for visually constructing
applications for mobile platforms designed to engage students [Abe09].

¿e Logo Blocks visual environment, while relevant due to its applications with the RCX
and in Pedagogy focuses on a di�erent problem to the one the demonstrator tool seeks to
solve. Logo Blocks style visualisations address the creation of sequential code, while the
problem area of the demonstrator tool is high level program structuring and purely program
composition. ¿e structuring techniques presented for sequential code are of tangential
interest, as in combination with high level program structuring they would permit an entirely
visual approach to process-oriented programming; this potential for further extension of the
work is discussed in Section 6.2.3.

Mindstorms and LabVIEW

¿e LEGOMindstorms RCX was supplied to educators with a piece of visual programming
so ware called RoboLab. RoboLab is a package of library routines and customised inter-
faces for National Instruments’ LabVIEW [ECR00]. LabVIEW is a visual programming
environment originally designed for instrument control and data collection in laboratories.
RoboLab presents a palette of possible actions for the robot to perform, which are connected

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 111

together by the user on a canvas to indicate their execution sequence. A number of additional
components allow the modi�cation of execution �ow, including looping structures and
conditionals.

Figure 4.6: A control program designed in the LabView-based RoboLab environment, from [ECR00]

Barnes has created a set of materials designed for UK Key Stage 3 (11–14 year old) schoolchil-
dren to pick up programming the Mindstorms RCX using RoboLab’s visual paradigm and
e�ective use of the variety of sensing, actuation, program control structures and conditionals
blocks within a few hours [Bar05]. ¿ese materials are a signi�cant inspiration for the devel-
opment of a visual environment for process-oriented programming, as the same graphical
compositions and methodology could be applied to process networks given an appropriate
tool and visual toolbox of processes.

¿e LEGO Group continue to supply a visual language with the newer Mindstorms NXT,
again based on LabVIEW and called NXT-G. ¿e NXT-G language borrows metaphors
from LEGO blocks in terms of visual layout, and is changed from RoboLab in signi�cantly
emphasising data-�ow over wires between components. ¿e full LabVIEW product is not
speci�cally a robotics environment but can it be used for robotics, and sets of components
are supplied to allow its use with the Mindstorms NXT.

LabVIEW’s graphical control language, G has shown potential for the design of robotic
control systems outside of small, educational robotics platforms, having been used by the
Virginia Tech Team in the 2007 DARPAUrban Challenge to claim third prize [RAA+07]. Lab-
VIEW’s underlying runtime supports concurrency and the language is inherently concurrent,
allowing the construction of programs with multiple �ows of control. ¿ese environments
are restricted to purely visual representations of programs; removing the speed and �ex-
ibility of expression that comes with textual programming. ¿ere is no underlying model

112 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

to LabVIEW’s concurrency and control over it is taken away from the programmer — the
runtime may run individual components in di�erent threads at its choice, but the semantics
of concurrency are not de�ned in the visual language.

Microsoft Robotics Studio

Another recent development in commercial visual programming environments for robotics
is the Microso Visual Programming Language (MSVPL), included only with Microso
Robotics Studio (MSRS) [Mic08].¿is visual language ismuch likeNXT-G in being a robotics
focused data-�ow language consisting of both primitives for looping and variable creation,
alongside more complex components acting as services.

MSRS allows users to connect the data �ow path between a number of concurrently executing,
potentially network distributed services. ¿ese distributed services run via the Decentralised
So ware Service (DSS) and are co-ordinated within the Concurrency and Co-ordination
Runtime (CCR). ¿e CCR uses asynchronous communication between components to allow
the design of parallel systems. Programming DSS components is a challenging task and re-
quires knowledge of distributed service-oriented programming— components communicate
using HTTP and a SOAP-based protocol — making the creation of custom systems di�cult.
¿ese components are de�ned in C#, outside the scope of the visual language, although the
need to program DSS components is avoided for common educational robotics platforms, as
components are built into the environment.

¿e relevant component of MSRS, the MSVPL reduces the programming task to connecting
combinations of these prede�ned C# components together visually. MSVPL can be used in
this way to program several of the robots used in Chapter 3, including the Surveyor SRV-1
and Pioneer 3-DX.

¿e toolbox and component canvasmodel used in theMSVPL is very similar to that proposed
for POPed, especially the provisioning of sets of robotics platform-speci�c components. It
should be noted that there is no underlying textual representation for programs written using
this visual environment, a constraint whichMSVPL shares with LabVIEW. Lacking the ability
to write sequential code textually, the visual paradigm in these toolsmust contain all primitive
actions which can be completed. As a result of this constraint, MVPL has Data blocks which
input values speci�ed by the programmer to named Variable blocks, a clunky workaround
for assignment, as shown in Figure 4.7. ¿e entire MSRS environment is restricted to use on
Microso Windows, a limitation in a multiple operating system environment.

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 113

Figure 4.7: A sample program in the Microso Visual Programming language, showing its visual
representation for variable assignment, conditional and hardware interface, from [Mic08]

4.2.2 Visual Process-oriented Programming

Historically a number of visual occam programming and program visualisation tools have
been created; where the former is used for creating new programs visually, and the latter for
visualising the execution of programs written textually. It is also possible to �nd a number of
other tools for other varieties of process-oriented programming, including CSP-based ap-
proaches. Of the occam and occam-pi tools in the literature, with the exception of Sampson’s
LOVE, very few are in a state in which they can be viably used today. In the case of the
occam-based tools, the majority of development and activity on visual environments and pro-
gramming for occam occurred during the height of the success of the Transputer, predating
the modern occam-pi-based desktop era applications of the language. ¿e historical rela-
tionship of occam to the Transputer is discussed in Section 2.2. ¿ese environments depend
on features built into the physical hardware of the Transputer or capabilities of commercial
so ware developed by Inmos to support programming of Transputer hardware from the
commodity workstations of the period. Tools designed for use with networks of Transputers
commonly have features present to support the implementation and optimisation of occam
programs on this specialised parallel hardware which have no equivalent in the desktop
toolchains used for occam-pi today. Elements such as visual layout of so ware processes
across processors in a Transputer network and the instrumentation of programs to provide
processor and inter-processor link utilisation data provide suggestions on tooling which
could be created to enhance the state of process-oriented programming in occam-pi. ¿ese
opportunities are discussed further as extension work in Section 6.2.5.

114 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

GRAIL

Stepney’s GRAIL o�ered a visual representation of the parallel and sequential structure of
occam programs, using the hierarchical structure of the language to manage large programs
by “folding” (hiding) sections of the program [Ste87, Ste89]. GRAIL allowed for the additional
display of channel information, but the representation used bears little resemblance to those
used for process networks and is tied to the hierarchical display of parallel and sequential
occam code. No editing capability was provided within GRAIL, but its representation of
process internals could be developed into a visual language for the creation of sequential
occam code.

Visputer and Millipede

A number of graphical tools have focused on the design of distributed programs for execution
across multiple Transputers, using the visual elements to allow programmers to specify the
distribution of the processes comprising the program across the processors.

Visputer by Zhang and Marwaha provided a complete set of graphical tools for program
composition, processor allocation, performancemonitoring and debugging [ZM95]. Visputer
provided the option for nested processes to be expressed in a visual language, with low-level
logic provided textually. Millipede by Aspnäs et al. provided visual process layout integrated
along with performance monitoring of processes and communication links [ABL92].

Millipede used processes and channel ends as its primitives in a palette of graphical com-
ponents, providing a way to place channels between processes, con�guring the network and
specifying process interfaces. As with Visputer, Millipede made use of a text-based editor for
specifying process logic and allowed the graphical expression of compound process networks
containing nested sub-networks of processes.

TRAPPER

TRAPPER by Scheidler et al. o�ered a graphical programming environment comprising
four separate component tools: Designtool, Con�gtool, Vistool and Per ool [SSKF95]. ¿e
entire TRAPPER environment covers a similar scope to Visputer, but its separation allows
us to focus on Designtool, the most relevant component of the four to visual programming.
TRAPPER allowed for the reduction of large process networks into a hierarchy of sub-

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 115

networks which can be collapsed, an essential feature for managing complexity. ¿e use
of connection points at the edge of process network diagrams to represent connections to
the outside world in Designtool is novel and serves well to highlight the interface between
program and hardware interfaces, as shown in Figure 4.8. ¿e remaining three components
of the TRAPPER environment relate to management of tasks involving the con�guration,
instrumentation and optimisation of programs running on actual Transputers, and as such
are of limited relevance to our objectives at this point.

Proceedings of the 28th Annual Hawaii International Conference on System Sciences - 1995

:*irrlude <nisc.h>
jlnclude <stdllb.h>

;vold Odtsv (
Process *process.
int Pid,
int MaxPid. chalnel mpshl:
r3lannel l npsout.
chalnel *cgdout,
I”=

I
odtlilze,

chalnel l odt1n Cl,
Channel fodtOutC1,
-1 elfgIn.
IXznnel *mfgOut, . .."._\

static int bufferCgCIX_VEHIUESlC2001.

Fig. 4. Subsystem Obstacle Detection and Tracking (ODT).

ports are represented by two channels (eg. mfg-in,
mf g-out), the suffix -in / out indicates the direction of
the corresponding port. Ports having the same name are
grouped as channel arrays (eg. odt-in [I , odt-out [I),
the length of the channel array is provided by an additional
parameter (eg. odt-size). Parameter ports are provided
as normal parameters (eg. int NUMl). The Designtool
also supports a constant propagation mechanism, the value
of the parameter port ODT NUM of the subsystem ODT can
be propagated to all processes inside this subsystem.

(SPMD) approach.

The program code is associated with the process type and
not with the process itself. In other words, processes having
the same name share the same process code. By that, TRAP-
PER implicitly supports the single program multiple data

The upper right window of figure 4 shows the TRAPPER
attribute editor displaying various attributes of odt sv. The
language attribute for example specifies the language of the
program code, currently C frames or OCCAM frames can be
generated. C and OCCAM processes can be mixed. In the
ODT subsystem the processes of the bottom layer and the
LLV subsystem are implemented in OCCAM for reasons of
efficiency, whereas the top layer processes are implemented
in C. The Comlibattribute specifies the underlying commu-
nication system. The Editable attribute can be used to lock
processes against further editing. Pre-coded process blocks
or process graphs can be exchanged between users in a soft-
ware project.

354

!"#$%%&'()*+#,+-.%+/0-.+1232''+4(-%"(2-'#(25+6#(,%"%($%+#(+78*-%9+7$'%($%*+:14677;<=>+
?@A@BCD/=E<=+F?@G@@+H+?<<=+4III+

Figure 4.8: TRAPPER’s Designtool showing its connection points outside of the canvas for interfacing to
external components, from [SSKF95]

The Strict occam Design Tool

¿e Strict occam Design Tool (SODT) by Beckett and Welch allowed for process networks to
be designed graphically using common paradigms of occam programming [BW96].¿e tool
was speci�cally aimed at the creation of deadlock-free systems and made use of interfaces,
which de�ned roles for processes which speci�ed their communication behaviour. ¿ese
interfaces were used in SODT to enforce the Client/Server, IO-SEQ and IO-PAR parallel
design patterns [WJW93], ensuring that networks designed with SODT were deadlock-free
and that components were composed in these patternswhich have been proven correct. Visual
representations for various complex capabilities of the occam programming language were
described as future expansions to SODT. ¿ese expansions are of interest when designing a
visual environment capable of manipulating more complex process architectures, especially

116 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

those using features such as replication to create pipelines, rings and grids of processes.

gCSP

¿e gCSP tool by Hilderink and Broenink et. al. [BJ04] o�ers a visual environment for
designing concurrent programs using a graphical modelling language based on CSP [Hil02].
gCSP is written in Java, allowing it to run across major operating system platforms. Both
data-�ow and the concurrency of the program along with a hierarchical view of the program’s
structure are presented to the user, more thoroughly discussed for the design of user programs
in [VHB+00]. ¿e ability to provide an information-rich outlined structure of a process-
oriented program, whilst being beyond the scale of our current aims for an introductory tool,
is a potentially desirable feature for developing more complex programs.

Figure 4.9: A gCSP session showing sequential and parallel composition of processes, along with the
hierarchical browser, from [BGL05]

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 117

gCSP has multiple code generators which allow it to output C++, occam or CSPm from the
user-facing graphical representation of the program, essentially making the graphical repres-
entation an intermediary between many di�erent process-oriented languages [BGL05]. ¿e
model of code generation from connected components is similar to the desired functionality
of POPed, removing the need for of syntax. ¿e visual language used in gCSP is designed to
fully express programs graphically and has stronger ties to CSP than occam.

However, gCSP’s primary representation is its diagram format — the code generation is
merely provided as a way to run these programs under di�erent process-oriented runtime
environments. gCSP is intended for building CSP systems and generating implementations,
rather than allowing construction of programs in the implementation languages. ¿e gener-
ality of gCSP is problematic for its use as an introductory tool for occam-pi programmers, as
its syntax is fairly obtuse and there is a signi�cant learning curve.

GATOR

GATOR (Graphical Analysis Tool for occam Resources) by Slowe and Tanner aimed to
provide a debugging aid for occam programs and to progress towards a graphical environment
for the program creation [ST04]. ¿e user interface of GATOR is shown in Figure 4.10.
GATOR was able to provide extremely rudimentary visualisation of connections between
processes and data communicated by pre-processing source �les. ¿is processes parses the
source for names of processes, names of channels and their connectivity; the source �le is
then transformed to include special tapped channels which report on their activity back the
GUI tool via a TCP/IP port at run-time.

¿e visualisation of the process network is done via a spring-embedded graph, a primitive
approach designed purely to ensure that the labels on the processes were readable and
channels were clearly visible; this was only moderately successful as can be seen in Figure
4.10. GATOR highlights a signi�cant problem in this regard: when visualising executing
process-oriented programs, how to lay out the processes created in a way that re�ects their
relationship to each other and makes the program intelligible. Programmers are used to
process network diagrams, where a lot of these layout decisions are made aesthetically and
informally — delivering a similarly pleasant result automatically is very di�cult.

118 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

Figure 4.10:¿e main window of GATOR, from [ST04]

LOVE

¿e Live occam Visual Environment or LOVE by Sampson [Sam06] is a graphical environ-
ment for creating networks of synthesiser components for audio creation. LOVE’s combina-
tion of process-oriented programming and audio builds on an existing relationship between
visual data�ow tools and synthesis. ¿e open source PureData graphical language [Puc96]
and its progenitor, the MAX graphical language by Puckette et. al. [Puc91] build networks of
objects which receive input, generate output or both. As its name suggests, LOVE focuses
on a live approach to programming, allowing synthesiser components to be plugged and
unplugged while the program is running; LOVE uses standard occam-pi processes and chan-
nels, with a small wrapper around the processes to allow them to be plugged and unplugged
from networks.

LOVE shares scope with our desired tool, in presenting a prede�ned set of components
for the user to connect together on a canvas on which they can be arranged. LOVE is a
process-oriented program written in occam-pi; it draws a custom, vector based user interface;
components in LOVE have representations based on their function which allow them to be
interacted with, as shown in Figure 4.11. Due to this custom representation and user interface;
LOVE cannot be repurposed as a tool for ordinary composition of processes.

LOVE uses graphical selection of channel ends to aid in making connections, with visual
cues for correct input connections when an output is selected. ¿is is a desirable feature in a

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 119

Figure 4.11:¿e Live occam Visual Environment, LOVE, from [Sam06]

120 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

visual editor, simultaneously enforcing type rules and easing the process of creating networks
for the user. It has no structuring tools for larger networks, allowing the users to see the
entire network at once, but restricting the size of networks that can be created; Sampson
notes in future work for the tool that it would be ideal to allow the user to indicate groups of
components to be re-used as a larger component.

POPExplorer

POPExplorer by Jacobsen takes a di�erent approach to manipulating process networks as
it interfaces with the Transterpreter virtual machine runtime directly, modifying internal
runtime state to manipulate process networks [Jac06]. Processes are selected from a list in
the tool, and their source code is shown. When the user clicks a ‘create’ button, the code is
compiled and the resulting bytecode loaded into the VM.¿e execution state of individual
processes can be controlled independently Channels can be connected and disconnected
whilst processes are running, and the communication state and type of a given channel
end is displayed. ¿e extent of POPExplorer’s modi�cation of runtime state introduces
conditions that occam-pi programs would not expect to encounter; the communication
model of occam-pi channels assumes that messages will not disappear ‘in �ight’.

4.2.3 Summary of Features

A number of desirable features for a combined robotics and visual process-oriented program-
ming environment can be identi�ed from the environments surveyed.

¿e use of a toolbox of components and a drag and drop canvas in which the user manually
places processes is found across several tools: LegoBlocks, RoboLab, MSRS and LOVE. Of
the robotics environments, RoboLab groups components by control structure, with separate
‘toolboxes’ for waiting for events and looping while MSRS separates out basic network routing
and control structures ‘Basic Activities’ from a �lterable list of all other components. ¿e
process-oriented programming environments surveyed do not generally contain the same
segregation, with LOVE not distinguishing between generic and domain-speci�c processes
and POPExplorer using a �at list of available processes. Grouping of components by function
may be applied to provide a separation between the processes relevant to a speci�c hardware
platform or architectural approach.

Most of the tools surveyed have an area of the interface where the components that are part

4.2. EXISTING VISUAL PROGRAMMING ENVIRONMENTS 121

of the program appear when part of the active program. In tools where the visual language
re�ects textual program code, such as LogoBlocks and Scratch, the layout of components on
the screen is tightly de�ned by where the component is syntactically valid. In these tools the
location of a speci�c component has semantic meaning about what order the component
will execute in, or which operation it will be a part of.

Whenworkingwith network graphs, as in a number of the process-oriented tools, the location
of speci�c components in the visualisation has no semantic meaning; the programmer may
commonly choose to arrange the components for aesthetic routing of channel connections
or to re�ect functional groupings of processes. GATOR is unusual in this regard, as it applies
an auto-layout algorithm to automatically layout the currently visible set of processes; this
results in process network diagrams that do not resemble those typically drawn by hand.
Tools which build data or control �ow networks, including RoboLab andMSRS tend to result
in programs which spread horizontally, with the convention being for input to arrive at the
le of a component and output to depart from the right.

Techniques for the management of complexity in visual programs are not present in all tools
surveyed; this limits their applicability to generating larger programs – as the user runs out
of space for components, portions of the program become hidden from view.

Process-oriented programming allows for subnetworks of components to be encapsulated
inside a process. Two of the process-oriented programming tools surveyed, Grail andVisputer,
allowed these encapsulation processes to be expanded and contracted, facilitating working
with larger scale programs. ¿e ability to group subnetworks of processes into compound
networks on the �y is desirable, as o en a single behaviour or function is composed of many
processes. ¿e visual representation chosen for processes also has an e�ect; the larger the
visual representation of a process is, the less of them may appear in the diagram at any given
time if all processes are visible.

¿eprovision of a user interface to examine and set the parameters to a component is common
to many of the visual tools surveyed. Some, like MSRS and LOVE, allow this manipulation
directly on the component body itself, clearly showing the current parameter value on the
representation. ¿is has advantages of clarity – the functionality of a network of processes
depends on both its topology and the parameter values given to the components therein
and both are clearly visible. ¿e disadvantage to this direct interaction is in increased size
of components, requiring additional space for the interface to set parameter values above
and beyond channel connection points and the name of the process. ¿is increased size of
representation ties to issues discussed earlier around managing complexity as networks grow

122 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

larger.

¿e provision of a visual syntax for expressing sequential logic divides a number of the tools
examined. RoboLab, MSRS and LegoSheets allow values and operators to be expressed as
visual elements, while Scratch is designed around replicating the structure of textual code
with visual components. Of the process-oriented tools, GRAIL and gCSP both employ two
views of the program, a graph structure for high level design and a separate visual syntax for
expressing sequential logic. Expressing sequential logic is a strength of textual program code.
Removing the need for the programmer to write sequential logic through the provision of
a comprehensive set of existing components tailored to the task at hand is possible given a
limited scope; LOVE and RoboLab achieve this due to speci�c focus on a speci�c task and
platform respectively. Aiming to avoid the need for the programmer to write sequential logic
and designing a purely compositional tool makes provision of �exible, task and platform
speci�c components critical.

4.3 Design

Formulating the design of the demonstration tool in isolation of its implementation sep-
arates practical concerns from the expression of an ideal environment. ¿e demonstrator
environment should support the creation of basic data �ow example programs using pure
process composition, using Welch’s LegoLand components. ¿e LegoLand components are a
set of processes designed for use in introducing students to process-oriented programming.
Students use the components to create programs which pass a stream of integers, providing
an introduction to process network composition and the communication patterns required
in process-oriented program design.

¿e environment should also facilitate the creation of behavioural robotics programs for robot
platforms. To this end, the environment contains groups of hardware interface processes
speci�cally for use with the LEGOMindstorms RCX (presented in Section 3.1.5) and Surveyor
SRV-1 robotics platforms (presented in Section 3.1.6).

Based on the elements surveyed in Section 4.2.3, the design of the visual environment
focuses around three elements: a Toolbox, a Canvas and an Information Panel. A mock-up
containing these elements is shown in Figure 4.12. To compose programs in the tool, users
choose processes to add to the program from the toolbox list on the le side of the screen
and double-click or drag the entry onto the canvas to the right to create a new instance of

4.3. DESIGN 123

the process. When browsing the toolbox list, metadata about the process is shown in the
information panel to the bottom right including the purpose of the process and expected
input and output. ¿e toolbox list has some hierarchy, allowing for groups of processes
appropriate to a task or given hardware platform to be visible and those not relevant to the
task at hand to be hidden.

Channel connections are made using channel connection points on the processes themselves;
convention determines that inputs are on the le side of the process and outputs are on the
right side of the process. To connect a channel, the user selects two channel connection
points in succession; if the selection contains both input and output connections with the
same type, the channel is created. If the selection contains two connection points of the same
direction, or of mismatched types a message is presented in the information panel explaining
the problem with the selection. ¿e user is aided in selecting the correct connection points
as once the �rst selection is made, the unconnected points le in the network of the correct
type and direction are highlighted.

SRV-1 Hardware

Image Processing

Legoland

Vehicles
Subsumption

camera

Toolbox Process: camera
Grabs an image from the camera
Outputs: image frames

camera

[]BYTE frame

luma.half
INT left

INT right[]BYTE frame

motor.left

INT speed

motor.right
INT speed

camera

[]BYTE frame

console.in

motor.left

motor.right

POPed - Example

luma

luma.half

black.hole

delta

id

plex

prefix

threshold

Figure 4.12: A mock-up of the POPed user interface

When the user wishes to run the program the demonstrator tool checks that the process
network is fully connected, to verify that it forms a valid program, and writes an occam-pi

source �le containing the processes and topology of the network. ¿e source �le is created
by combining the code for each of the processes used and generating a top level process

124 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

containing all of the processes and channel de�nitions speci�ed graphically by the user. ¿is
generation avoids an entire category of potential programming errors which can occur in
the wire-up of process networks, leaving channel ends unconnected or forgetting to create
speci�c channels. Once the source �le has been generated, execution of the program requires
invocation of the occam-pi toolchain to compile the source to a bytecode �le and in the case
of robot platforms, the use of a tool to transfer the bytecode from the host computer running
the environment to the robot itself.

Toolbox

¿e toolbox is located on the le -hand side of the window and contains a grouped list of
the processes available in the environment. When a process is selected in the toolbox list,
information about its inputs, outputs and parameters is displayed in the information panel
at the bottom of the screen along with a description to aid the user in understanding the
purpose of the process. ¿e information panel is fully discussed in Section 4.3. Processes
within the toolbox are logically grouped together to allow the programmer to hide sets of
processes which are not currently relevant to the task at hand. To make use of components
to build a program, the programmer can drag from the toolbox onto the canvas or double
click the entry in the list, at which point a instance of the process in the toolbox appears and
can be freely positioned on the canvas.

Toolbox processes can be speci�ed in generic terms, despite the lack of generics in occam-pi,
allowing processes to be parameterised by a type. POPed uses a template with placeholders
for the generic types to generate code, substituting concrete types into the templating and
ensuring that occam-pi’s strict typing rules are met. ¿is templating feature is essential to
avoid the toolbox being �lled with variants of basic network routing components, such as
delta and plex, which vary only in the types declared on their interface and temporary
local variables. ¿e use of templating to emulate generics is fully detailed, along with an
example of the process, in Section 4.4.6.

¿e ability to use generics means that processes such as delta can be speci�ed , and the tool
can generate a specialisation of the delta for basic types such as INT, or BOOL depending on
the connections made. It is necessary to place a constraint such that once one of the channel
ends on a process using generics is connected to, that the generic type is set for all channel
ends. For example, if a delta process were placed on the canvas and had its input connected
to a channel of INT from another process, its outputs would at that point be become of type

4.3. DESIGN 125

CHAN INT. ¿is approach to generating code instead of real generics is limited in terms of
its use as channels using PROTOCOLs cannot be handled as a standard datatype; PROTOCOlS
require special handling via CASE statements to handle the variant present in the message. As
hardware interfaces on the Surveyor SRV-1 make extensive use of PROTOCOLs, this will need
to be improved to avoid the need for additional interface processes to simplify the protocols
to basic types.

¿e processes visible in the toolbox reside in the �lesystem in a hierarchical structure match-
ing the toolbox.¿e set of processes present in the tool may be extended at any time by adding
additional directories (for new groups) and process ‘block’ �les inside those directories, as
speci�ed in Section 4.4.3.

Process Canvas

¿e process canvas is the central focus of the tool, being the area in which the user builds
their program. Channel ends are represented by connection points on the process, allowing
the user to easily connect the processes together. ¿e user selects a connection point and
the potential points to which a connection can be made are highlighted. ¿is highlight
re�nes the user’s choice to just the valid set of connections, giving a visual representation of
both type-compatibility and direction of the unconnected connection points in the network.
¿is selection mechanism is shown in Figures 4.13(a) and 4.13(b); once a connection has
been made, a directed arrow is placed between the two connection points. On attempting
to compile a program which is not fully connected with channels between all connection
points on the canvas, an error is displayed in the information panel informing the user of the
processes which are not properly connected, and the o�ending channel connection points
are highlighted.

Layout of the process network is managed entirely by the user, capturing the way paper
or diagramming tools are typically used in the �rst few weeks of parallel program design.
Processes on the canvas are able to have their program code inspected, allowing the user
to gain an insight into the code behind the diagram. Ensuring the underlying code is not
hidden is important as allowing the programmer to reason about the relationship between
the diagrams being manipulated and the underlying occam-pi program code composing
the components and network is a signi�cant pedagogic element. ¿ere is a constructivist
element at work here as the user creates the program from the high level components and
is able to gain knowledge and reason about the internals of processes in the context of the

126 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

luma.half
INT left

INT right[]BYTE frame

motor.left

INT speed

motor.right
INT speed

(a) Possible connection points, no selection
made

luma.half
INT left

INT right[]BYTE frame

motor.left

INT speed

motor.right
INT speed

(b) Connection point selected, possible
connections highlighted

Figure 4.13: Connection points and their type highlighting mechanism

overall program and its function.

¿is functionality provides a starting point fromwhich to include editing of existing processes,
although editing is outside the scope of the prototype. By assuming that all processes present
in the environment are syntactically valid and that all composition code is generated the tool
is able to avoid a signi�cant amount of work in designing appropriate error handling and
feedback to let programmers debug and identify syntax errors in a combination of generated
and user created code. As noted in Section 4.3.1, while this avoidance simpli�es the handling
of program code dramatically it also limits the applicability of the environment to general
purpose process-oriented programming.

Given that POPed is a demonstrator tool, programmers using it will move on to create
programs textually in the occam-pi language — the aim of the environment is to allow
mental models to form and investigation of the programming model based on initial visual
experiences of composition and network design.

Information Panel

¿e information panel is located at the bottomof the screen and allows contextual information
to be provided to the student about processes selected from the toolbox and canvas. An
example of the information displayed when a toolbox process is selected is shown in Figure
4.12, while an example of a selected canvas process is shown in 4.14.

¿is presentation of additional textual information is intended to allow the programmer
to fully understand in isolation the components that make up the program, along with
the relationship between the connected processes. Information may be inferred from the
connections between processes to present the user with textual descriptions of the inputs

4.3. DESIGN 127

Process Instance: luma.half
Calculates luminance values for the left and right halves of an image frame.
Inputs: Image frames from camera
Outputs: Left half luminance value to motor.left,
Right half luminance value to motor.right
Parameters: none

luma.half
INT left

INT right[]BYTE frame

Figure 4.14:¿e information panel with a process instance selected on the canvas

and outputs from a process instance. ¿ese descriptions provide a simpli�ed explanation
of the component’s operation within the system, given well named processes and described
types. An example of these explanations for a luma.half process is shown in 4.14, where a
camera process has been connected to input and two motor control processes (motor.left
and motor.right) are connected to the outputs.

4.3.1 Limitations of the Visual Environment

By restricting the visual environment to a pre-constructed toolkit of processes, its utility
is restricted purely to process network composition. ¿is reduction in scope removes a
signi�cant issue in the development of a visual programming environment — interaction
between environment generated and user written program code. In situations where syntax
or run time errors can be introduced into the generated program code, the programmer
is forced to reason not only about their own program but also the generated code. ¿is
restriction also facilitates the use of templating to emulate generics, as described in Section
4.4.6; requiring a programmer to reason about the e�ects of source-level transformation on
their code adds an additional layer of complexity above the occam-pi language.

By omitting the ability to edit processes andmaking the assumption that blocks present in the
environment are valid, the environment is able to ensure that only syntactically correct and
compilable programs are constructed. While additional blocks may be created by following
the block format speci�cation in Section 4.4.3, adding a metadata header to the occam-pi

process source code and placing the block in the toolbox directory, this is not an intended
extension route for programmers.

¿e inability to write sequential code also limits the application for use of the tool for
introductory process-oriented programming with students. Examining the tool in the context
of the introductory concurrency course at the University of Kent, its current scope is capable

128 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

of being used for introductions to process-oriented designs over the �rst week of the course.
However almost immediately a er this introduction the exercises completed by students
contain both high level tasks and the requirement to complete the implementation of skeleton
processes (e.g. compose certain sets of pre-existing or pre-de�ned processes where one or
more processes do not contain an implementation body). A number of tasks also request
that students draw diagrams to show the process networks present in their compositions.
¿e tool would continue to be relevant to the high level design portions of these tasks, and
act to remove the need for a separate diagramming step; students would be working with
the visual representations of their programs continuously. In the absence of a method to
introduce process bodies or new process implementations to the visual environment the tool
cannot be applied beyond the �rst week of the course.

POPed is restricted in the size of process-oriented programs it can be applied e�ectively to for
two reasons: the inability to abstract sub-networks of processes into named compositional
processes, and maintaining visual representations which resemble diagrams drawn using
more �exible methods whilst including all state required for design.

In a typical process-oriented program some processes will be constructed via the parallel
composition of other processes - this abstraction of internal functionality facilitates the cre-
ation of larger process-oriented programs. In its current state POPed does not accommodate
any facilities for encapsulating sub-networks of processes or visualising any internal sub-
networks of the top level processes in the network. Permitting sub-networks to be de�ned
and selectively hidden would allow more complex programs to be designed in the visual
environment, permitting the de�nition of sub-networks which may be re-used elsewhere in
the program or the collation of a unit of functional behaviour into a single, named process.

As POPed does not employ any automatic layout algorithms when adding processes to the
canvas, the organisation of connected or related process groups is le to the programmer. In
this respect POPed requires the same e�ort as in drawing a process network by hand or in a
diagramming tool, as the most legible diagram will be the result of choice in positioning of
the processes.

A constraint in the use of POPed for larger scale programs is also the representation size
of processes. ¿e representations are relatively large due to the requirement of presenting
usable click targets on the channel connection points and annotating the process with the
name and type of all parameters and channel ends. ¿e large size of process representations
restricts the number that may appear on screen concurrently and makes it di�cult to get an
overview of the program. ¿e environment having the ability to encapsulate sub-networks

4.3. DESIGN 129

of processes inside a process and conditionally display these sub-networks would allow
functional groupings which resolve the problems of overviewing large programs with large
visual representations.

4.3.2 Robotics Support

Two speci�c robotics control applications have been considered in the construction of the
default process toolbox in POPed. A number of hardware interface processes and general
purpose components have been provided to allow the creation of simple pipelines, but speci�c
components have been included to facilitate the creation of programs based on Braitenberg
Vehicles (described in Section 3.2) and subsumption architectures (described in Section 3.3.1).
¿ese two paradigms for designing robotic programs from communicating components have
been applied successfully to process-oriented robotic control and lend themselves well to
being constructed with �xed sets of components.

Vehicles

When targeting �rst explorations in concurrent robotics, Braitenberg’s Vehicles o�er a useful
introduction to what can be accomplished with small numbers of processes connected to-
gether [Bra86]. By connecting sources of sensory input directly (or almost directly) to outputs,
very simple programs can be created that behave in interesting and easily anthropomorphised
ways.

luma.half
INT left

INT right[]BYTE frame motor.right
INT speed

camera
BYTE[] frame

motor.left
INT speed

Figure 4.15: A process network for a Braitenberg vehicle which appears to ‘avoid’ light

¿e program shown in Figure 4.15 shows a simple program for the Surveyor SRV-1 which
uses a small number of processes to achieve an interesting result. Image data from the camera
is averaged to provide a light level reading for the le and right of the image. ¿ese light level
values are subsequently sent to the motor.left and motor.right processes respectively,

130 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

which change the speed that the motors on each side of the robot run proportionally to
the value received. By connecting the light levels and motor speeds together using a direct
relationship, the robot will turn away from light sources. A higher light reading on the
le -hand side than the right will cause the le motor to run faster than the right, e�ecting a
right turn away from the direction with the higher light value. ¿e inverse is also true: by
slowing the motors as the light level increases, a robot may be programmed that seems to like
light and heads towards it. To achieve the inverse, the connections between the two halves of
the light reading and the motors may simply be swapped over, so each light reading goes to
the motor on the opposite side of the robot. Of note in the implementation of Braitenberg
Vehicles is that processes which generate values within the network have had their values
scaled to the range 0–100, such that the brightness reading from luma.half can be used
directly as a motor speed.

Subsumption Architecture

Brooks’ subsumption architecture involves building robot control systems with increasing
levels of competence composed of concurrently operating modules [Bro85]. ¿e application
of the subsumption architecture for designing process-oriented robotics programs is fully
explained in Section 3.3.1, and provides substantial motivation for the use of a graphical
process network con�guration tool.

Is there space behind the robot?

Turn away from objects in front of the robot

Go forward, stop if too close to something

min.distance

LASER data INT distance

prev.collision

INT distance INT action

object

LASER data BOOL object

pivot

BOOL object INT suppress

has.space.behind

SONAR sonar BOOL has.space

inhibit.pivot
timeout: 100000

INT outINT in

BOOL inhibit

suppress.motor
timeout: 1000000

INT outINT in

INT suppress.in

Figure 4.16:A small robot control program built with the subsumption architecture which uses two types
of sensor input and three behaviours to manoeuvre around a space

Diagrams are invaluable tools for structuring and reasoning about subsumption architectures,
as the relations between components and positioning of inhibition and suppression primitives

4.4. IMPLEMENTATION 131

are visible. To support the creation of subsumption architectures in POPed, the suppression
and inhibition primitives are implemented as toolbox processes.

¿e demonstrator tool is currently limited to a �at process network structure, as discussed in
Section 4.3.1, meaning that subsumptive behaviours cannot be distinguished from the groups
of processes making them up. To better support the development of large subsumption-
based control programs, it would be necessary to allow sub-networks of processes to be
collapsed into a single top-level composition process. ¿ese compositional processes map to
‘behaviours’ in the subsumption architecture.

To illustrate the advantages of a visual approach to the design of subsumption architectures, it
is useful to make a comparison between a process network diagram for a simple subsumptive
program and the occam-pi code required to set up the network as presented in the diagram.
Figure 4.16 shows a graphical representation of a simple program which moves around a
space and backs away from objects if the robot gets too close to them.¿e occam-pi program
code to set up the process network as shown in the diagram (assuming that all components
and hardware interfaces exist and are available) is shown in Listing 4.1.

Each behaviour is broken out separately in the diagram, with the outer dotted box enclosing
the sets of processes which are composed to create a single behaviour.¿e complexity inherent
to this code, declaring and connecting the network with named channels of appropriate types,
can be completely eliminated using the visual approach. ¿e removal of this complexity is
desirable as subsumption architectures grow beyond two or three behaviours to have ten or
� een levels of behaviour.

4.4 Implementation

¿e POPed tool is implemented using Python and the wxPython GUI toolkit. Python was
chosen as it is already used for scripts in the Transterpreter toolchain — most notably
occbuild.py, whichmanages driving the compiler and linking with libraries and occamdoc
which generates HTML documentation from structured markup comments in source code.
wxPython is a Python wrapper around the wxWindows GUI toolkit chosen as it allows a
native look-and-feel to be achieved on all three major desktop platforms (Windows, Mac
and Linux). Cross-platform support in the composition tool is essential as students on the
concurrency design and practice course use a variety of these platforms; the Transterpreter
run-time’s support for all three modern desktop platforms is also a factor.

132 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

PROC explore.space ()
CHAN MOTORS motor.control:
CHAN INT min.distance:
CHAN INT motor.in, motor.out, motor.suppress:
CHAN INT pivot.motor.in, pivot.motor.out:
SHARED ? CHAN LASER laser.data:
CHAN SONAR sonar.data:
CHAN BOOL object, inhibit:
PAR
motor(motor.out?, motor.control!)
brain.stem(motor.control?, laser.data!, sonar.data!,

default.player.host, default.player.port)
min.distance(laser.data?, minimum.distance!)
prev.collision(min.distance?, motor.in!)
object(laser.data?, object!)
pivot(object?, pivot.motor.in!)
suppress.motor(suppress.time, pivot.motor.out?,

motor.in?, motor.out!)
inhibit.pivot(inhibit.time, inhibit?,

pivot.motor.in?, pivot.motor.out!)
has.space.behind(sonar.data?, inhibit!)

:

Listing 4.1: Construction of the process network for the example simple robotics program in occam-pi

4.4. IMPLEMENTATION 133

Figure 4.17:¿e user interface of POPed , with a number of processes connected by channels

4.4.1 User Interface

A screenshot of POPed’s user interface is shown in Figure 4.17. ¿e same three user interface
components as in the design are present: a process canvas, a toolbox of processes and a
information panel for documentation about the currently selected process.¿e user interface
is recon�gurable, with the panels arranged by default as speci�ed in Section 4.3. ¿e toolbox
and process information panels can be moved to another edge of the window, split or �oated
independently of the main window to suit individual’s preference and di�erent usage patterns.

4.4.2 Process Canvas

Right clicking on a process allows the inspection of its parameter values, as shown in Figure
4.18.

134 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

Figure 4.18: User interface for setting the parameters of a process in POPed

4.4.3 Process De�nition Blocks

¿e toolbox, to the le of the screen, contains a hierarchical list of process names separated
into groupings. ¿ese correspond to blocks, �les organised in a directory structure under a
blocks directory of the so ware. Groupings are controlled by the directory layout of the
contents of the blocks directory, allowing related groups of blocks to be grouped together
and providing a structure to avoid occam-pi’s lack of namespace support. An example block
for an id process, annotated to de�ne the purpose of each metadata �eld, is shown in Listing
4.2. ¿e example id block also demonstrates the generic type emulation supported in these
blocks and detailed in Section 4.4.6.

Each block �le contains a metadata header in YAML (Yet Another Markup Language) format
followed by a dividingmark (— Code), and then the program code of the process. YAML aims
to be a human readable serialisation of data structures; a YAML section such as the one in
the block �les can be loaded with a single library call and produces a set of native dictionaries
and typed values, avoiding the complexity of parsing more structured data formats, such as
XML.

Storing the interface of the process as separate metadata rather than parsing the header of

4.4. IMPLEMENTATION 135

Process Name
name: id
Modules this process uses.
requires:
List of parameters this process takes, along with their types.
params:
List of input channel ends: name, type carried and purpose.
input:
- name: in

type: ANY.T
desc: Input values to be buffered

List of output channel ends: name, type carried and purpose.
output:
- name: out

type: ANY.T
desc: Last value received by the id process.

Description of the process’ purpose.
desc: >

A process that provides a one slot buffer for incoming values.

--- Code
PROC id (CHAN ANY.T in?, out!)
WHILE TRUE
ANY val:
SEQ

in ? val
out ! val

:

Listing 4.2: A process block de�nition for the POPed visual environment, providing an id process
implemented in occam-pi and using generic (ANY) type speci�cation

136 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

the process means the environment could very quickly be extended to support processes
implemented in other process-oriented programming languages such as PyCSP [ABV07] or
JCSP [WB08]. Given that the composition of the network uses the block metadata, only a
specialised code generator with knowledge of how to construct a language speci�c top-level
process connecting the network is required to adapt the environment to a new process-
oriented programming language.

4.4.4 Toolbox Processes

¿e set of processes in the toolbox, as identi�ed in the comparison of environments (Section
4.2.3) are critical to the utility of the environment in the absence of the ability for the pro-
grammer to de�ne additional components and add them to the toolbox. Given the aim of the
environment to allow composition of Welch’s Legoland components and the construction of
robot programs, groups of processes are present in the toolbox corresponding to these tasks.

Utility Processes

A set of non-task speci�c processes of general use in process-oriented programming is
provided in the environment. ¿e visual representations of these processes are shown in
Figure 4.19.

• id, a process which provides a one-place bu�er by reading input and forwarding it to
output.

• tail, a process which discards the �rst value sent and then e�ectively has the same
semantics as id, forwarding input to output.

• delta, a process which forwards its input to output but also duplicates the output to a
second channel, and plex which does the inverse, reading from two input channels
and multiplexing the two streams of input into a single output.

• prefix, a process which �rst outputs an initial value, supplied as a parameter, then
forwards input to output.

• threshold, a process which outputs a boolean value corresponding to whether the
value it is supplied is over a threshold set as a parameter.

4.4. IMPLEMENTATION 137

• black.hole, a process which discards all input it receives.

• scale, a process which scales integer values from one range to another range, speci�ed
as parameters.

• timer, a process which outputs a tick signal at a given frequency speci�ed by a period.

• int.diff, a process which outputs the di�erence between two input streams.

delta
ANY.T out.0

ANY.T out.1ANY.T in

plex

ANY.T outANY.T in.1

ANY.T in.0

id

ANY.T in ANY.T out

tail

ANY.T in ANY.T out

prefix
ANY.T prefix

ANY.T in ANY.T out

black.hole

ANY.T in

threshold
INT threshold

INT in BOOL out

timer
INT period

BOOL tick

scale
INT min.in
INT max.in
INT min.out
INT max.out

INT in INT out

int.diff

INT outINT in.1

INT in.0

Figure 4.19: Processes in the ‘Utility’ group, including Welch’s Legoland components and a number of
helper processes.

LEGOMindstorms RCX

A group of processes are present in the toolbox for interfacing to the Mindstorms RCX and
are shown in Figure 4.20. Rather than use two sensor processes, one for all ‘active’ sensors
on the RCX that require power and one for all ‘passive’ sensors which do not, each type of
sensor that can be attached to the RCX has a separate process. Having a separate type of
process per sensor retains a mapping between the physical connectivity on the robot and the

138 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

process network diagram, as discussed in Section 3.1.5. Interface processes are also present for
the outputs and actuators of the RCX: motor driver processes, lcd.out.int for displaying
numbers on the internal LCD and speaker for playing tones. Values scaled to the range
-100–0–100 where possible to facilitate direct connections between sensors and actuators; for
example motor speeds run through this range, while the temperature and angle sensors will
return unscaled values.

ir.write
BYTE data

temp.sensor
BYTE port

INT temp

touch.sensor
BYTE port

BOOL touch

light.sensor
BYTE port

INT value

speaker
BYTE port

INT sound

motor
BYTE port

INT speed

ir.read
BYTE data

angle.sensor
BYTE port

INT angle

button.pressed
BYTE button

BOOL press

Figure 4.20:Hardware interface processes for the LEGOMindstorms RCX

Surveyor SRV-1

¿e Surveyor SRV-1 presents challenges to the implementation of toolbox processes. As the
high level process-oriented interface to the robot (as described in Section 3.1.6) uses channel
bundles, an entirely custom set of processes would have to be added to the environment if the
native interface was exposed. Additionally, the generic type emulation implemented in the

4.4. IMPLEMENTATION 139

environment does not have the ability to distinguish channel bundles. To work around these
limitations in the environment a set of processes, designed speci�cally for use in the POPed
environment, are used to simplify the channel bundle operations to basic data types and
standard channel communications. ¿ese processes are shown in Figure 4.21, their purpose
is as follows:

• camera, a process which outputs an entire frame from the camera in RGB format as
an array of bytes.

• out.int, a process which allows a stream of integers to be output the serial console
and out.framewhich permits the same for frames from the camera.¿e serial console
of the robot is transmitted over WiFi to the host computer, where the terminal used is
able to pull out image frames and display them to the user based on the header.

• motor.left and motor.right correspond to the pair of motors driving the tracks on
each side of the robot. Values in the range -100–0–100 are accepted with the boundaries
correlating to full speed backward, stop and full speed forward respectively.

• laser.left and laser.right control the two front mounted laser pointers on the
SRV. ¿ese pointers would typically be used for ranging, as the size of the dot they
project will become larger as the robot approaches an object.

• luma.half and luma both act as a �lter on the camera frame data, extracting brightness
information. ¿e luma.half process calculates two values for the le and right halves
of the frame while the luma process calculates for the entire frame.

¿is set of hardware processes for the SRV-1 facilitates the use of the camera on the SRV-1
as a light sensor and as an image source for the host computer. As the SRV-1 was explicitly
designed for investigations into vision processes it is not sensor rich; therefore the major-
ity of applications would require additional processes providing other high-level camera
functionality.

Subsumption Architecture

As presented in Section 3.3.1, the subsumption architecture makes use of two primitives to
provide interactions between groups of components: suppression and inhibition. ¿ese two
components e�ectively act as a straightforward id process when no interaction between

140 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

camera

[]BYTE frame

luma.half
INT left

INT right[]BYTE frame

motor.left

INT speed

motor.right
INT speed

laser.left

BOOL on

laser.right
BOOL on

luma

INT luma[]BYTE frame

out.int
INT in

Figure 4.21:Hardware interface toolbox processes for the Surveyor SRV-1

suppress
INT timeout

ANY.T outANY.T in

ANY.T suppress

inhibit
INT timeout

ANY.T outANY.T in

BOOL inhibit

Figure 4.22: Visual representations of generic suppressor and inhibitor primitives for use in imple-
menting subsumption architectures.

4.4. IMPLEMENTATION 141

groups is occurring, passing input to output. When the suppressor is active, values from
input are discarded and replaced with values of the same type from the suppression input;
when the inhibitor is activated, via a boolean channel, all output is blocked for the speci�ed
timeout. ¿ese properties allow generic implementation of inhibit and suppress in the
environment, shown in Figure 4.22.

4.4.5 Use of Toolbox Processes

¿e use of toolbox processes to construct robot control programs is an important step in
proving the utility of a composition-only design tool for program creation. ¿is section
presents two example programs for two di�erent robot platforms: the Mindstorms RCX and
the Surveyor SRV-1 constructed using a mixture of the general purpose and hardware speci�c
processes.

¿e Mindstorms RCX program, shown in Figure 4.23, uses an RCX with two light sensors
connected and spaced apart at the front of the robot and two tracks on either side controlled
by a motor at each side.¿e hardware con�guration of the RCXmanifests as sets of processes
at the le and right edges of the process network. ¿e program is designed to be a line
follower, guiding the robot along a path indicated by a black line on a white background. ¿e
light sensors sit on either side of the line, e�ecting a turn when the sensor intersects the black
line (i.e. the brightness value from a particular sensor drops). ¿e program performs this
behaviour by taking the di�erence between the two light values; this di�erence value is then
duplicated and fed into a scaler on each side. ¿e scalers perform the logic in this program,
raising the motor speed on one side and lowering it on the other as the value moves from
one side to the other. When the di�erence between the light sensor readings is 0, both motor
speed values are scaled to 50 and the robot drives straight; when the di�erence is -100 one of
the motors speed is 0 and the other’s speed is 100. As this process happens continuously and
reactively to the input values, any condition in the input should correct itself due to motion
by the robot and the line is followed.

¿e expression of this program using a composition-only approach is di�erent to that of an
ordinary process-oriented solution. Usually a custom process with sequential logic would
be responsible for taking the two light sensor readings and determining appropriate output
levels for the motors. ¿e compositional approach has an advantage that the exact path of
data �ow is obviated at the top level of the program, while the use of a custom process would
simplify and remove redundancy from the expression of the scaling logic rather than the use

142 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

light.sensor
BYTE port : 1

INT value

light.sensor
BYTE port : 3

INT value

int.diff

INT outINT in.1

INT in.0

delta
INT out.0

INT out.1INT in

scale
INT min.in : -100
INT max.in : 100
INT min.out : 100
INT max.out : 0

INT in INT out

scale
INT min.in : -100
INT max.in : 100
INT min.out : 0
INT max.out : 100

INT in INT out

motor
BYTE port : C

INT speed

motor
BYTE port : A

INT speed

Figure 4.23: A compositional line following program for the Mindstorms RCX consisting of processes
from the RCX hardware interface and utility toolbox groups.

of two processes.

¿e Surveyor SRV-1 example program, shown in Figure 4.24 is designed to demonstrate
the use of multiple pipelines with image frames. ¿e program both passes the frames into
the main network, which controls two laser pointers based on the brightness values in the
camera frame, and into a second process which sends the frame back to the host system over
the Surveyor’s serial link. ¿e ability to add additional pipelines or processes whilst keeping
existing networks and processes static is a signi�cant advantage to the compositional model;
in this case a second delta could be added and another image processing step used, or if the
out.frame is being used temporarily for debugging the output from the camera process
may be connected directly to the luma.half process when the programmer is satis�ed with
the program without having side-e�ects on the rest of the program. ¿e control system
uses a threshold process for logic, controlling the laser processes directly based on the
processed brightness values from luma.half.

While this section has demonstrated the application of process toolbox components via com-
position producing robot control systems, there are a number of limitations these examples
highlight in the approach. ¿e introduction of high level processes for logical operations,
like threshold or the use of the scale process to achieve certain e�ects in the output is
not typical of process-oriented programming. Toolbox processes require signi�cant care in
their design to avoid requiring a number of conversion or casting processes to allow di�erent
components to connect together; a lot of information is lost in the input data in re�ning it to
values which may be applied elsewhere in di�erent contexts.

As discussed in the limitations of the visual environment (Section 4.3.1), programs grow
quickly in width due to the representations chosen for processes; a property also evident in

4.4. IMPLEMENTATION 143

camera

[]BYTE frame

luma.half
INT left

INT right[]BYTE frame

threshold
INT threshold : 50

INT in BOOL out

laser.left

BOOL on

laser.right
BOOL on

threshold
INT threshold : 50

INT in BOOL out

out.frame
[]BYTE in

delta
[]BYTE out.0

[]BYTE out.1[]BYTE in

Figure 4.24: A compositional program for the Surveyor SRV-1 which turns on the laser pointer on a
particular side of the robot if the brightness on that side exceeds a threshold and outputs camera frames
to a host computer.

the illustrations provided in this thesis which use a very similar representation. Requiring the
implementation of all program logic using composition results in additional complexity in
the network of the program; rather than being able to decompose the program functionally,
the program becomes a series of transformations and �lters over streams of data to reach
the intended output form. ¿is requirement for transformations and �lters also pushes the
interfaces used to expose hardware toward basic data types which pose least di�culty in
being repurposed for use as input to other processes.

4.4.6 Emulation of Generic Types

A generic type in a programming language allows a placeholder type to be used at design
time and the reference made concrete, resolved to a speci�c type, either at compile or run
time. Generics are typically used to create re-usable code which is able to be parameterised
to a given concrete type. For a visual programming environment designed around process
composition the lack of generic types in occam-pi is a signi�cant problem. In the absence of
generic types, general purpose processes used for data-�ow control such as delta (splitting
one channel into two) and plex (short for multiplex, combining two input channels onto one
output channel) must be replicated for every type they are to be used with, using di�erent
names to di�erentiate the processes.

In building POPed, this limitation adds such complexity to a toolbox model that it was
essential to provide a solution; the alternative would involve having entire groups consisting
of variants of these general purpose components in the toolbox. As the program code output
from POPed is the combination of process block �les and generated composition processes,

144 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

it is possible to use template substitution in the environment to simulate generic types for
process blocks.

To implement this template-based generic emulation, the block de�nition parser in POPed
recognises keywords beginning with ANY. as a type variable for substitution when referenced
in occam-pi source code and YAML block metadata. A process may have any number of ANY.
channel types, and its body may use the ANY. type as if it were a concrete type, as it will be
substituted before reaching the compiler. A speci�c identi�er is placed a er the ANY. pre�x
to permit meaningful naming of generic types and allow multiple generic types in a single
process (e.g. ANY.T, ANY.X, ANY.FOO). ¿is template-based approach places the burden
of correctness on the designer of the process blocks in the environment. Care must be taken
to ensure that a speci�c ANY. identi�er must be used consistently when reading and writing
messages and values inside the process.

In the visual environment itself, a speci�c ANY. identi�er is specialised as soon as a channel
connection is made to any input or output, and the diagram updated. ¿e concrete type
populated is stored alongside the generic identi�er, allowing the process to revert to the
generic type if the connection is broken. A number of processes can be connected together
without specialisation if all connections share the same ANY. identi�er; once a connection is
made with a concrete type the type is propagated to specialise all generic connection points,
as shown in Figure 4.25.

delta

ANY.T out.0

ANY.T out.1ANY.T in

plex

ANY.T outANY.T in.1

ANY.T in.0

numbers
INT start: 0

INT out

delta

INT out.0

INT out.1INT in

plex

INT outINT in.1

INT in.0

Figure 4.25: An incomplete process network before and a er propagation of a concrete type

During code generation the ANY. identi�ers in occam-pi code are specialised to the type
de�ned by the connections made, as shown in Listings 4.3 and 4.4 where a generic delta
process with a single ANY.T identi�er is specialised for use with integers via templating.

4.4. IMPLEMENTATION 145

PROC delta (CHAN ANY.T in?, x!, y!)

WHILE TRUE

ANY.T val:

SEQ

in ? val

PAR

x ! val

y ! val

:

Listing 4.3: Generic de�nition of a delta
process.

PROC delta (CHAN INT in?, x!, y!)

WHILE TRUE

INT val:

SEQ

in ? val

PAR

x ! val

y ! val

:

Listing 4.4: Generated specialisation of the
delta process when connected to an input
or output carrying integers.

¿is limited solution works to address many generic component de�nitions and make the
use of general purpose network routing components feasible in the visual environment
without replicating every process per-type. Cases in which the data type is complex, such
as a PROTOCOL variant or collection types which must be indexed into would require actual
support for generics in occam-pi. As the specialisation process is completely separated from
the program code, it can be di�cult or impossible to create generic processes whereby two
di�erent generic types are passed in and used in a single operation, as it is complex to produce
conditional logic using the choice of type at run-time.

4.4.7 State of Implementation

¿e development of the tool is not fully complete, and as such, only a subset of the complete
set of desired functionality is currently implemented. It is worth re-iterating that this tool is
intended to serve only as a demonstrator, as a full implementation of an educational tool for
parallel programming in occam-pi would require a more detailed analysis of use cases and
the interaction between students and the visual representation of their programs. ¿e work
required to apply the principles in POPed to general purpose process-oriented programming
is discussed in Section 6.2.1.

146 CHAPTER 4. A DEMONSTRATOR ENVIRONMENT

4.4.8 Re�ections on Implementation

¿e implementation work carried out to date in building POPed has provided a number
of insights into building a visual programming tool which are signi�cant to any e�ort to
develop a similar tool or for further development of POPed.

As the Transterpreter virtual machine is highly portable to allow the use of occam-pi in more
places, a deliberate choice was made to avoid restricting the visual environment to a single
desktop operating system. While Python has worked well as an implementation language,
and wxPython’s initial promise of providing a native-feeling UI, wxPython hampered im-
plementation through lack of documentation and poor implementation of cross-platform
features.

Choosing to implement a process canvas from scratch, rather than re-using an existing graph
component yielded signi�cant �exibility in the interaction model and exact representation of
processes. However, this slowed development considerably and in re�ection, customisation
of an existing graph library would be an appropriate trade-o� to bene�t from developments
in graph theory and layout algorithms for loading existing programs without a prescribed
layout.

Chapter 5

Introspection and Debugging

¿e e�ective application of process-oriented programming for robot control, as described in
Chapter 3, is subject to the limitations of the program development environment. Process-
oriented programs, like any computer program, can and will contain errors despite the best
intentions of the programmer. Debugging these errors is an essential part of the edit, compile,
test cycle of development. Support for debugging and examining the behaviour of concurrent
programs is critical to permitting e�ective use of the programming model.

Support for debugging is especially critical to the applications of process-oriented program-
ming in robotics. Where the robot is a separate platform to the host computer — the majority
of cases in our use of occam-pi for robotics — run-time errors occurring in the program will
at best manifest as a printed message containing a virtual machine error code, at worst as a
non-responsive run-time environment with signi�cant safety concerns.

Tools and techniques for debugging programs written in imperative languages containing
a single thread of control are limited in their e�cacy for concurrent programs. Debugging
so ware which uses concurrency is a di�cult problem in general; the temporality of multiple
threads of control introduces complex problems: non-determinism, deadlocks and race con-
ditions [MH89]. Even building tools to facilitate the debugging of these problems is complex;
temporality means problems can change or disappear when the run-time performs additional
activity to monitor the behaviour of the program (the “Probe E�ect” [Gai86]). Debugging
process-oriented programs is complex. While the programming model and compiler support
prevent some classes of concurrency error, each process executes independently, distributing
execution state throughout the program.

¿e need for rich debugging tools was present at the inception of occam as a language for

148 CHAPTER 5. INTROSPECTION AND DEBUGGING

programming the Transputer, and a number of debugging and program visualisation tools
were designed for use when developing occam programs on these hardware architectures.
With the shi away from transputer hardware to modern desktop run-time environments
for the occam-pi language and several decades of operating system advancement, these tools
are no longer available or applicable.

¿e design of a tool for examining execution of an occam-pi program for e�ective debugging
of robot programs is presented.¿is toolmay also be used as a demonstrator, with a pedagogic
motivation, allowing the inspection of programs speci�cally designed to encounter conditions
of livelock and deadlock.

Using the visual language and environment established in Chapter 4 as a basis for visualisation
of program state, given information from the run-time environment about the behaviour of
the program, gives a head start on establishing such a tool from scratch. One of the most
signi�cant challenges is in representing the execution in a way the programmer can relate to
their program. Starting with a program which has been designed in a visual tool means a
layout has been established by the user and allows the user’s choice of diagram to be used for
representation.

¿e motivation of this tool is to allow observation of robot program behaviour, and identi�c-
ation of errors in the so ware.

5.1 Errors

To classify the handling of concurrency errors in di�erent programming models and lan-
guages, it is important to �rst establish the classes of error which can occur in the program
development cycle. ¿ere are three classes of error: compilation, run-time, and logic. De-
pending on the programming model and language in use, concurrency errors can manifest
in any of these three classes of error.

5.1.1 Compilation Errors

Compilation errors occur, as their name would suggest, at compile time when the user
performs an action to convert the program code they have written into machine code.
Compilation errors can broadly be broken into syntactic and semantic errors. Syntactic
errors are where the composition of the program is incorrect; the user has forgotten a bracket,

5.1. ERRORS 149

a semicolon or an argument to a function. Semantic errors occur where the meaning of the
program is clear, but the operation as speci�ed is incorrect; a number may be too large for
the type it is stored in, an argument to a function may be of the wrong type. ¿ese errors
prevent the program being compiled, and therefore coming into existence as machine code -
a program with compilation errors can’t be compiled. Compilers may also produce warnings
to encourage good code hygiene (such as identifying unused and unde�ned variables) or
identify potential run-time errors in cases where certainty cannot be established.

5.1.2 Run-time Errors

Run-time errors occur where operations that occur whilst the program are running produce
invalid instructions for the computer (or virtualised run time, in the case of a virtualmachine)
to execute. For example, in the statement speed = distance / time, if time were to be
zero, then the division operation generated by the compiler will fail. At compile time, the
values of these variables are not known, so the error can’t be detected. Static analysis is
able to move an ever increasing number of errors of this kind back into the compilation
error category, analysing the produced machine code to produce ranges of likely values and
producing errors if it can de�nitely identify a path through the code that will end in a state
suggesting run-time error. Static analysis is not a complete solution - it cannot account for
invalid user input or a number of run-time conditions that can be encountered (although it
may be able to warn about unchecked inputs). ¿e kinds of run-time error categorised here
are fatal, producing inconsistent state in the machine that results in program termination.

5.1.3 Logic Errors

Logic errors are a second kind of run-time error, but one which is far deeper, bears less
traction for static analysis techniques and is most critical to the programmer who is able
to create syntactically valid programs. A logic error is e�ectively a di�erence between what
the programmer expects the program to do, and what it actually does when run; a program
with a logic error in it is still a valid program and the error is invisible to the computer itself.
For the programmer, resolving the di�erence between their intent and the actual function
of the program requires understanding why the program behaves as it does, given the code
of the program. While this may be possible to achieve by inspecting the program code and
reasoning about it line by line, o en programmers have to debug the program, by examining

150 CHAPTER 5. INTROSPECTION AND DEBUGGING

its run time state for variations from what would be expected.

5.2 Concurrency Errors

As far as concurrency is concerned, many languages must treat errors as run time logic
errors; the fact that unsafe memory usage patterns exist are not typically treated as hard
compiler errors that must be �xed before the program will compile. At compile time, occam-

pi programs are checked for safe concurrent usage of variables inside processes, and the
program will fail to compile if two processes are able to write to a variable at the same time.
Parallel usage is therefore removed as a class of run-time error, as the compiler is able to
analyse for it. Process-oriented programs written in languages like Java or Python, using
primitives implemented as libraries cannot do these checks, as the underlying language
still contains the potential to create unsafe parallel usage operations. Whilst the output of
the compiler, occ21, can be cryptic at times, the most commonly encountered errors are
reported clearly, making writing an occam-pi program which compiles not tremendously
di�cult.¿emotivations of this thesis, Section 2.2.1, discuss the advantages of using occam-pi

for process-oriented programming rather than an implementation of the primitives as a
so ware library.

5.2.1 Non-determinism

Non-determinism in program execution presents signi�cant challenges when debugging;
when something goes wrong with a program, the state in which the system was in is critically
important for a programmer to identify the issue. In an imperative program with a single
thread of control, the program follows a series of statements to produce the current state of
the machine; the execution behaviour can be reasoned about from the source code. Where
the system executes in parallel and a scheduler provides access to machine resources, the
behaviour of the scheduler is a factor in the execution behaviour of the program. Where
programs are running in parallel, the execution time of components a�ects the scheduling
behaviour, and the state of the machine; an error may happen in a very small number of
cases where particular execution times overlap. Non-determinism also negatively e�ects
testing, once an error is �xed the programmer may not be able to replicate the scheduling or
execution state conditions in which the program reached the error. It is o en the case that
testing for the presence of concurrency errors requires running critical sections very large

5.2. CONCURRENCY ERRORS 151

numbers of times to extract temporal and scheduling edge cases.

5.2.2 Livelock and Deadlock

Livelock and deadlock are introduced as concepts relatively early on in teaching process-
oriented programming, as they are the most commonly encountered run-time errors in
process-oriented programs.

Deadlock is a condition where two or more actions are waiting on each other to �nish, and
thus the actions can never complete; a real world example being two people meeting in a
corridor where they cannot pass each other, and both stopping to let the other go �rst, neither
making progress. Figure 5.1 shows two examples of process networks that encounter deadlock,
used as the �rst introductions to deadlock on the concurrency design and practice course at
the University of Kent. A network of succ processes, which receive a number on their input
and output the number incremented, all of the processes in this network wait cyclicly for a
number on their input anti-clockwise. A network of n processes, which output the number
they are supplied with as a parameter when they start, and then revert to behaving as an id
process, passing input to output; this network deadlocks as every process is waiting, trying
to output to its clockwise neighbour.

n
(0)

n
(1)

n
(2)

n
(3)

c[0] c[1]

c[2]
c[3]

succ

succ

succ

succ

c[0] c[1]

c[2]
c[3]

Figure 5.1: Two examples of process-oriented programs designed to illustrate deadlock.

Livelock is a condition where a group of actions engage in communications with each other
in�nitely, not responding to the outside world; the same real world corridor example would
be both people moving to the other side, meaning that a er both move they are still blocked.

An incorrectly designed process-oriented program may contain a cycle of processes which
can enter a state where they are waiting for input from each other, or the ability to add

152 CHAPTER 5. INTROSPECTION AND DEBUGGING

additional tra�c to the network.

5.2.3 Race conditions

¿e process-oriented model is designed to facilitate the sharing of data by communication. If
a process needs a particular piece of data, it should receive this data over a channel, where the
exchange will explicitly move the data from one process to another, as the sending process
will lose the data. Where references are used, for MOBILE data in occam-pi or as the standard
variable access method in other languages, ownership of references should pass with the
communication, meaning the sending process cannot maintain access to the reference, or an
alias for it a er the communication. ¿e occam-pi toolchain does parallel-usage and aliasing
checks on the program when compiling it to verify that data is used safely; programs that
pass the veri�cation checks can be guaranteed free of race conditions.

Where process-oriented programming is achieved via library support such as JCSP in Java or
PyCSP in Python, the compiler and/or interpreter are not able to reason about the concurrent
aspects of the program. In other languages, the programmer must be careful to observe the
anti-aliasing and parallel usage rules of process-oriented programming without assistance
from the compiler, again making race conditions a possible source of error.

5.2.4 Debugging

Debugging is a human process; �nding the di�erence between the programmers’ intended
behaviour of the program and the program as expressed and executed.¿e goal of debugging
is to obviate the state of execution of the program to determine where the actual behaviour has
diverged from the expected behaviour. ¿ere are two main approaches to debugging: tracing,
outputting information about program state and use of a debugger, to control execution of
and allow inspection the state of the program.

Tracing

A programmer’s �rst experience of debugging logic errors is o en via “printf style debug-
ging”, named for the printf function that allows output of text and variables to the terminal
using the C programming language. Early on when learning to program we learn how to
print a message to the screen (the classic “Hello World” example being prevalent). ¿is one

5.2. CONCURRENCY ERRORS 153

of the �rst functions encountered is the variant of printf style debugging for that particular
programming language. As there is a single thread of control through a program written in
an imperative language, insertion of commands to print messages containing program state
at particular points allow the programmer to observe what is happening during execution of
the program. A program annotated with print statements will output a trace of its execution,
limited to the elements annotated by the programmer. ¿e e�cacy of this method is entirely
determined by amount of thought applied by the programmer in placing the print statements,
determining which state to print and the appropriate points in the program’s execution to
print it. As Kernighan states: “¿e most e�ective debugging tool is still careful thought,
coupled with judiciously placed print statements” [Ker84].

¿e advantage of this practice is simplicity; the programmer can quickly annotate the elements
of the program that they are interested in to be printed or logged. ¿e disadvantages are
numerous; adding and subsequently removing the print statements will change the semantics
of the program, and may change its behaviour in ways that either resolve or change the
original bug. ¿is is particularly true for race conditions, where the temporal ordering of
reading and writing to memory is responsible for the error. Once the logic error is �xed,
the programmer must remove or disable the printf style debugging without a�ecting or
otherwise modifying the rest of the program - if another related or similar error is found
subsequently, the messages must be put back. ¿ere are various strategies for managing
this kind of output, such as printf style functions that automatically disable themselves
when the program is not in a ‘debug’ mode, but the source code will still be obscured by the
debugging annotations.

In a imperative program using concurrency, multiple threads of control are introduced,
making the use of printf style debugging more di�cult, especially where the issue being
debugged spans multiple threads. Debugging alters the behaviour of concurrent programs
using threads; if a thread is stopped to inspect its state its synchronisation and resource
usage patterns will change. Using printf statement debugging in a multi-threaded program
can expose bugs that did not previously manifest; printing is relatively expensive and will
slow down the operation of threads, changing the timings of execution in critical sections
of the program or waiting to acquire locks. ¿is behaviour is known as the “Probe E�ect”;
where an incorrectly synchronised concurrent program behaves di�erently when delays
are introduced [Gai86]. ¿ese temporal e�ects can also result in a program which behaves
correctly when debugging statements are added, and incorrectly when they are removed —
meaning there is a synchronisation error in the program as speci�ed before adding debugging

154 CHAPTER 5. INTROSPECTION AND DEBUGGING

delays.

¿e e�cacy of tracing for concurrent programs, particularly those based on a synchroniza-
tion model of communication events has been previously explored. LeBlanc et al. identi�ed
that by maintaining the sequence of events and decisions made, parallel programs can be re-
played” [LMC87]. Brown and Smith have explored the recording of traces for reasoning about
and understanding the underlying CSP formalisms of process-oriented programming [BS09].

Debuggers

A debugger executes the program to be debugged in an environment where it can control
execution �ow and monitor the state of the program. ¿e GNU Debugger (gdb) is typical of
the widely used debugging tools for imperative programs, allowing inspection of program
state such as the current call stack (showing the nesting of function calls resulting in the code
being run) and the values held in variables. ¿e debugger makes this inspection available
when the program reaches a fatal error, although the user is also able to set points, known as
‘breakpoints’, where the debugger will pause the program in a state allowing this inspection.
¿e execution �ow of the program can also be controlled once a breakpoint is reached; the
user can choose resume execution until the next breakpoint (resume) or step forward a single
statement in the code (step), optionally jumping into functions to step individually therein
(step into). ¿ese debuggers are powerful tools, allowing the user to leave their program
unmodi�ed and inspect its state in detail, but they have fairly steep learning curves. gdb has
a command line interface, with commands for the above actions, and the information they
return is purely textual. Integrated development environments o en wrap user interfaces
over this functionality, allowing the user to click buttons and see more structured output.

Support for debugging concurrent programs, with multiple threads of execution in the same
program, while available in lldb and gdb is limited to switching the state inspection and
control of execution �ow abilities between di�erent threads in the program. An important
part of debugging via a tool is relating the state of the program at a breakpoint or fatal error
e�ectively to the programmer, in a way that allows them to relate the fault to their mental
model of the program’s execution. In a sequential program with a single thread of control, the
source �le and line number (potentially aided by a call stack trace) are enough to be able to
allow the programmer to identify the source of the error and make assumptions about how
the program reached that point. ¿e programmer’s mental model of the system’s behaviour
in combination with the sequence of statements in the program and the state reached at the

5.3. RELATED ENVIRONMENTS 155

error is o en su�cient to identify logical errors in the program.

In a concurrent program there are multiple threads of control, so knowing a single position
in the source or how the process was started is signi�cantly less useful. ¿e error being
debugged could be the result of synchronisations between these threads of control, or be
the e�ect of a cascading error from another process. It is useful to be able to see the state
of each concurrently executing process and each of their positions, along with the state of
communications and synchronisations between them.

For occam-pi programs, KRoC supports basic post-mortem debugging; when a program
terminates due to fatal error the process being executed and the line position of execution
are printed to the terminal. A standard approach to providing richer debugging information
is using a logging channel, connected throughout the program and shared for writing, where
all processes can print log messages to create a trace of important events during execution.
However, this approach changes the temporality and synchronisation patterns of the program
and creates the probe e�ect. Printing to a shared channel also manifests many concurrency
problems: messages are output character by character, leaving the potential for them to
interleave and be corrupted, and any kind of bu�ering on the output channel may cause
messages to be lost on execution or break the relationship between the output and the events
of the program.

5.3 Related Environments

¿ere have been a number of previous e�orts in providing debugging tools for process-
oriented programs written in occam and occam-pi, especially for developing with physical
Transputer hardware. ¿e majority of these tools have su�ered from occam and the Transpu-
ter’s decline, and do not exist in a form in which they can be adapted or extended to work
with modern occam-pi toolchains and runtimes. However, their design serves to inform the
design of a debugging environment for modern occam-pi programs and their functionality
provides a useful starting point for establishing the need of programmers in debugging
process-oriented programs.

156 CHAPTER 5. INTROSPECTION AND DEBUGGING

5.3.1 INMOS Transputer Development System Debugger

¿e Transputer Development System Debugger supplied by INMOS for use with occam

on the original Transputer hardware allowed inspection of the processes running on a
particular Transputer including the values of variables inside them and contents of channel
communications [O’N87]. ¿e interface was completely command based, with no visual
representation of the layout of the processes or network.¿e feature-set of the TDS Debugger
primarily replicated the standard set of debugging tools available for imperative language,
breaking on errors and allowing the user to step the program. While stepping, the user could
inspect named variables in scope and perform the equivalent of jumping into functions in an
imperative language, jumping along channel communications into the process on the other
end of the communication.

5.3.2 GRAIL

Stepney’s Graphical Representation of Activity, Interconnection and Loading (GRAIL) was
a tool for representing an occam program graphically to examine its parallel structure,
communications and performance characteristics [Ste87]. ¿ere is no support for program
creation or editing in GRAIL, these functions are le to existing editors; the visualisations
are primarily intended for examination of program design and performance analysis results.
GRAIL represented the process network structure as shown in Figure 5.2, using rectangular
boxes for processes with arrowed lines drawn over the top indicating channel connections;
compositional processes are shown as dark shaded outlines. GRAIL also used a visual layout
for sequential and parallel code inside processes, indicating the structure of the code using
nested boxes and placing sections of code which were run in parallel horizontally level with
each other.

Figure 5.2: GRAIL displaying a network of three parallel processes connected by channels, from
Stepney [Ste87]

5.3. RELATED ENVIRONMENTS 157

¿e activity monitoring of GRAIL is the most signi�cant element as regards development
of an introspection tool — the TDS compiler was modi�ed to insert pro�ling statements
capturing information about execution counts and this information was returned from the
Transputer hardware when the program terminated (successfully, or otherwise). Based on the
returned statement execution counts process boxes were shaded from red (for ‘hot’ sections,
with large execution counts) to blue (for ‘cool’ sections, more infrequently executed with
low execution counts). ¿is simplistic analysis and visualisation was designed to give the
programmer insight into where the computation hotspots were in the program, informing
and evaluating of choices about process placement across across the hardware Transputer
cores. While process topology on physical hardware is not a concept with directly relevance
in modern occam-pi runtime environments, annotating process network diagrams with
performance information would be a clear form of communication for the results of such
analysis.

5.3.3 POPExplorer

Jacobsen’s POPExplorer is a graphical program builder created to take advantage of the
properties of a virtual machine runtime in allowing data collection about program execu-
tion [Jac06]. A number of extensions were made to the Transterpreter virtual machine to
enable a textual command interface for loading code and controlling individual process
execution; these modi�cations were invasive and as such not integrated into the virtual
machine on an ongoing basis. ¿e POPExplorer UI is shown in Figure 5.3, the interface
presents a list of processes by name and allows users to drag them onto a canvas, where
they can be wired together. ¿e environment is live; the action of dragging a process onto
the canvas does not merely update the visualisation, as when dropped the byte-code for the
process is loaded into the VM and the process is instantiated.

¿e state of channel ends is indicated in POPExplorer by the colour of the channel end points,
and the overall execution of the constructed program can be controlled (run, step, step to
next communication). POPExplorer is an indication of the promise in instrumenting the
Transterpreter to provide run-time information about programs without changing their
execution behaviour. Cleanly integrating support for tracing into the Transterpreter VM
would provide high-level, rich debugging functionality for all programs and keep execution
behaviour consistent.

158 CHAPTER 5. INTROSPECTION AND DEBUGGING

Figure 5.3:¿e POPExplorer Environment, From Jacobsen [Jac06]

5.4 A Debugging Environment for Process-oriented Programs

In using process-oriented programming for robotics, as described in Chapter 3, it has become
clear that as programs grow it is harder to reason about unexpected behaviour by the robot.
Posso’s larger scale testing of subsumption architectures in occam-pi speci�cally identi�es
issues of behavioural stall that in the absence of debugging tools for occam-pi, cannot be
de�nitively traced to the architecture itself or the speci�c implementation [Pos09].

Reasoning about programs becomes more di�cult due to the observed action of the program
being achieved through the interaction and resolution of choice between many di�erent
components and layers of state. Adapting the diagramming strategies for representing process-
oriented programming described in Chapter 4 in the context of visualising program execution
would allow for a clear picture of the system’s execution behaviour and internal state to be
presented.

In designing a debugging environment for robotics there are other concerns; facilitating
real-time control of the execution environment and streaming of execution state information
from amobile platform is di�cult and requires many of the facilities usually required only for
teleoperation. ¿e probe e�ects discussed earlier in this chapter are exaggerated by the need
to synchronise and update a remote visualisation environment and therefore signi�cantly

5.4. A DEBUGGING ENVIRONMENT FOR PROCESS-ORIENTED PROGRAMS 159

likely to cause di�erent behaviour when the program is under visualisation.¿e use of tracing,
recording execution state and allowing it to be replayed a er execution or the occurrence of
an error provides more �exibility on small mobile robot platforms and permits consistency
of execution, addressing a number of the concurrency debugging issues identi�ed previously
in this chapter.

5.4.1 Visualisation of Execution State

¿e existing principles for drawing process network diagrams of program design established
in Section 4.1 cover only program design. Given the amount of information contained in a
process network diagram for this purpose, it is challenging to add information about program
execution state without overwhelming the diagram. A number of previous tools discussed
above (Section 5.3) have drawn state onto network diagrams or process representations, but
no conventions have been established. Extending conventions established in Section 4.1 for
drawing process network diagrams with annotations and adaptations for execution state
visualisations provides a framework for using diagrams for debugging.

producer.consumer
3 PAR

consumer
2 WHILE TRUE
3 INT n:
4 SEQ
5 in ? n
6 :

producer
2 WHILE TRUE
3 INITIAL INT n IS 0:
4 SEQ
5 out ! n
6 :

Figure 5.4: A producer and consumer process being run in parallel, where the current execution position
is line 5 of the producer process

To reason about the behaviour of a program, knowledge of the current execution position
or positions (in the case of a multi-core scheduler) is essential. Figure 5.4 shows a process
network diagramwith adaptions for highlighting the current execution position; the currently
executing process is shaded in grey and the current source line position of the producer
process is highlighted in red. ¿e scheduling behaviour of the runtime is obviated in the
movement of the highlight around the network.

Showing the context of the process’ source code position in the diagram itself aims to allow

160 CHAPTER 5. INTROSPECTION AND DEBUGGING

the programmer to better understand the current position and allows for value inspection of
nearby variables as discussed later in this section. As the Transterpreter is a single threaded
run-time at this time, there is only a single highlighted process at any time.

¿e top-level process in the network shown in Figure 5.4, producer.consumer, is an example
of visualisation of process hierarchy. Both producer and consumer are forked in parallel
from producer.consumer and as such, the processes are drawn inside their parent process.
While this method captures the exact structure of the network, it is expensive in terms of
space, and as the nesting levels get deeper the size in�ates further, as the size of processes do
not scale. To resolve this problem, processes may be dynamically expanded and contracted
as the sub-networks inside them are being executed, but this yields additional problems in
terms of resizing the diagram.

producer
2 WHILE TRUE
3 INT n:
4 SEQ
5 out ! n
6 : INT n = 0

Figure 5.5: Inspecting the current value of a variable inside a process being executed

Value inspection is a key accompaniment to the current execution point while a fairly standard
feature of debugging tools in integrated development environments like Microso ’s Visual
Studio, is signi�cantly useful as all state is retained within processes. A small information
popup is shown next to the cursor when the user hovers over a variable name in the source
code snippet in the process which has already been executed, with the type and current value
of the variable. Hiding the information in this way keeps the process the same size, while
allowing the user to examine state as required.

While variable inspection allows some reasoning about what is being communicated along
channels, it is helpful to be able to reason about a history of values communicated between
processes. A channel inspection popup, similar to the one suggested for variables, is shown
in Figure 5.6, the channel’s name and type are referenced from the parent process where the
connections are made and shown at the top of the popup. A history of the last �ve values is
provided, and as in the example �gure, this communication history can be extremely helpful
in elucidating the behaviour of a component and the network in general. Values that are

5.4. A DEBUGGING ENVIRONMENT FOR PROCESS-ORIENTED PROGRAMS 161

number.disposal
6 PAR

black.hole
2 WHILE TRUE
3 INT n:
4 SEQ
5 in ? n
6 :

numbers
2 WHILE TRUE
3 INITIAL INT n IS 0:
4 SEQ
5 out ! n
6 n := n + 1

CHAN INT c
4
3
2
1
0

Figure 5.6: Inspecting the state of a channel, with the last 5 communicated values and the current value
on the channel waiting to be read highlighted

waiting to be communicated on a channel are highlighted in red, as shown in Figure 5.6 –
the black.hole process has not yet been rescheduled to continue from its synchronisation
point waiting to read from the channel, and as such the value 4 is still waiting on the channel
itself.

5.4.2 Layout

¿e structure of a program is used by the programmer to break down a solution intomeaning-
ful components with de�ned relationships between each other. When designing a program
visually these relationships are also captured in the layout of the process network; the user
creates a spatial model for the program.

When visualising a program which has not been graphically designed there is no source of
explicit layout information in the program source or run-time state. Automatic graph layout
algorithms, such as spring embedding are a possible solution to this problem; however the
results do not resemble process network diagrams as drawn by programmers. While drawing
a process diagram showing the execution state of the program is a technical challenge.

If the diagrams drawn do not relate to the programmer’s own mental or visual model of the
program there is still an indirection in mapping between the two. Where the program has
been graphically designed, using a tool such as that described in Chapter 4, the user speci�ed
visual representation for the relation between processes in the network should be respected
as closely as possible.

162 CHAPTER 5. INTROSPECTION AND DEBUGGING

5.5 Proof of Concept Implementation

To demonstrate and examine the utility of the ideas described in this chapter the author
collaborated with Ritson to create a proof of concept implementation [RS08]. ¿is proof
of concept was designed to be used in place of drawings and explanations to introduce
students to the concept of deadlock in process-oriented programs, introduced in Section
5.2.2. ¿is forms a minimal viable example of program visualisation, to present the example
the processes involved must all be shown, their current execution positions reasoned about
and the state of their channel communications shown. ¿e proof of concept implementation
consists of three pieces of technical work: adding support for execution control and querying
runtime state to the Transterpreter, a tracing program which uses the runtime state query
support in the VM to output traces, and a trace visualisation tool TC1.

5.5.1 Virtual Machine Support for Debugging

Use of a virtual machine (VM) runtime facilitates the use of introspection; a VM must
necessarily virtualise all execution state by de�nition. Hence it is possible to modify a virtual
machine tomake the state available externally, or to allow external interference with execution
behaviour. ¿is section has covered the dangers of doing so, in introducing timing e�ects
or runtime behaviours which do not exist in an unmodi�ed environment. ¿is is not to say
that a compiled program may not be instrumented; code may be introduced at compile time
which instruments the program, or a modi�ed runtime library may be compiled with the
program. However, the use of a virtual machine runtime for introspection means programs
remain unmodi�ed and the virtual machine may have its state inspection features enabled or
disabled as desired — a signi�cant aid when debugging.

To facilitate the development of introspection and debugging tools with the Transterpreter,
a number of extensions were made to the virtual machine to permit execution state monit-
oring. ¿ese extensions are based on principles established in hardware debuggers, such as
JTAG [IEE01] and are designed to support the creation of program introspection features as
described earlier in this chapter.

Existing support for executing multiple programs within the same virtual machine context,
discussed in Section 3.1.6 in the context of allowing a robot hardware interface and user
programs to coexist, was extended to support a program in one execution context controlling
and inspecting the execution state of a program in a second context. ¿is support is achieved

5.5. PROOF OF CONCEPT IMPLEMENTATION 163

via a channel based interface which supports the following operations:

• Run, execute byte-code instructions until the next breakpoint, error or program ter-
mination occurs.

• Step, execute a single byte-code instruction.

• Dispatch, execute a set of instructions supplied along with the command, injecting
code into the execution stream.

• Get/set state, access or modify virtual machine registers, stack and clock; particularly
useful for capturing state at a given time to later being restored.

• Read/write memory, restricted to when program execution is stopped to preserve
consistency, allowing access to and modi�cation of virtual machine memory.

¿ese operations permit detailed state logging and execution control, the building blocks
for any kind of program introspection or live programming tool. ¿e transputer byte-code
format has also been extended to include source line information allowing the currently
executing byte-code to be matched up to a position in a source �le. ¿ere are limitations
of this approach, external inputs cannot be controlled, and timers introduce temporality
to program behaviour, meaning the debugging interactions can a�ect the semantics of the
program. ¿e issue with timers can be resolved by switching to using a timer based on
the cost of instructions executed, meaning the real-world time di�erences if the debugging
commands interact are not evident to the program.

5.5.2 Tracing

A small tracing program is loaded into the virtual machine which dumps a plain-text trace
of process activity; this trace is lightweight, containing only the current process or channel
pointer memory address, source line information (available directly from the bytecode, as
detailed in Section 5.5.1) and a keyword per operation.¿ese keywords are: start for process
creation, => for the virtual machine switching context between processes, call for a function
call, input from for a channel read and output to for a channel write.

Despite additional information being available at run-time, the initial trace is purposefully
lightweight as to make its e�ect on execution of the program being logged as minimal as

164 CHAPTER 5. INTROSPECTION AND DEBUGGING

#00804CB8 @ sort_pump.occ:308
#00804CB8 start #00804630
#00804CB8 @ sort_pump.occ:309
#00804CB8 call sort
#00804CB8 => #00804CA8
#00804CA8 @ sort_pump.occ:74
...
#00804C10 @ sort_pump.occ:57
#00804C10 input from #00804CC8
#00804938 @ sort_pump.occ:310
#00804938 call test.rig
#00804938 => #00804928
#00804928 @ sort_pump.occ:278

Listing 5.1: A sample of state records from the lightweight trace of sortpump

possible. Source line information is stored to facilitate post-processing and enrichment of
the log; a more detailed XML formatted trace is created through this enrichment process,
combining each line with the actual source code from the program and attaching names to
processes from the code. ¿is detailed trace forms the input to the visualisation program,
allowing a separation of concerns between visualisation, tracing of execution behaviour and
parsing program source code.

5.5.3 Trace Visualisation

¿e trace visualisation tool, TC1, shown in �gure 5.7, is an experimental implementation
based on the principles established in Section 5.4. Drawing process network diagrams for
introspection purposes poses a di�erent set of constraints and requirements to drawing the
networks for program design, as considered in Chapter 4. Adding execution state information
to the process network diagram and presenting an interaction model with which to expose
relevant information and appropriate control over the visualisation of the program is signi-
�cantly challenging. ¿ere are therefore a number of di�erences between the representations
of process networks used in the POPed tool from Chapter 4 and the representations used in
TC1.

Process networks in TC1 are laid out using a force directed graph algorithm, moving the
processes away from each other as they are added to the diagram. ¿is approach conserves
and allows the e�ective use of space as the number of processes program grows and shrinks

5.5. PROOF OF CONCEPT IMPLEMENTATION 165

Figure 5.7:¿eTC1 trace visualisation tool replaying a trace of commstime, an occam-pi communication
benchmarking program.

during execution. ¿is leads to layouts and channel routing which are very di�erent to that
which programmers would typically create when designing by hand, as connected sets of
components would be grouped together by the programmer.¿is automated approach shares
a limitation with the program design tool; the diagram may over�ow the canvas if there are
too many processes to be rendered, as there is a minimum amount of space in the diagram
that the representation of a process may consume.

Processes in TC1 are labeled with their name and contain three lines of source code, including
line numbers, truncated to �t for width at around 35 characters to preserve horizontal space.
Context switching information encoded in the trace from the VM allows the currently
executing process to be tracked. Currently executing processes have a white background and
those not currently being executed are shaded in grey (as shown in Figure 5.7).

¿e trace contains source line information for each state change in the program, indicating
the statement currently being executed in each process. ¿is source position information
is used to extract three lines of contextual source which is displayed in the process itself.
¿e three lines form a sliding window of context around the current execution position
of the process. ¿e middle line of source code is always the current execution position of
the process, or in the case of processes not currently executing, where the VM will resume
executing. ¿e minimum representation size of a process is restricted by the choice to show
this source code and program execution position information as part of the representation.

A process may spawn other processes internally, and in fact this is one of the �rst actions
that happens in most process-oriented programs; the top-level process forks a number of

166 CHAPTER 5. INTROSPECTION AND DEBUGGING

Figure 5.8:¿e TC1 trace visualisation tool replaying a trace of commstime a er the delta process has
begun to fork parallel subprocesses

sub processes a er initialising their channel connections. ¿is spawning of sub-processes
cannot be ignored in the visualisation and given the established constraints on the minimum
visual representation size, any signi�cant use of sub-processes would �ll the available space.
To manage this complexity TC1 draws the internal process network of the process and scales
it down, as shown in Figure 5.8. Interaction is built into the tool to allow the user to double
click to zoom into the network inside a particular process and double click again to zoom
back out. ¿is interaction model allows the processes to be represented at a consistent scale
and gives a visual overview of the complexity of the program from the top level.

Channels in TC1 use a representation not seen in the design tool, with a central connection
point between two separate arrows forming the channel. ¿is choice has several rationales.
¿e visualisation tool must show that a channel input or output exists before it is fully
connected on both sides, using a connection point allows one end of the channel to be
represented without the other. ¿e use of a connection point provides additional drawing
�exibility, rather than requiring a clear straight path for an arrow to connect the two processes,
the connection point may be placed so as to allow routing around other processes.

¿e visualisation tool must represent the current state of the channel, showing whether either
of the processes connected to it are currently blocked on reading from or writing to it. ¿is
is achieved in TC1 by highlighting the channel arrow component which is blocked on, as
shown in Figure 5.9.

TC1 allows the speed of visualisation to be controlled by use of the le and right arrow keys
and the space bar is used to pause the visualisation. ¿is control is provided to facilitate step

5.5. PROOF OF CONCEPT IMPLEMENTATION 167

Figure 5.9: Channel representations and the highlight used to indicate blocking states in the TC1 visual-
isation tool

by step walkthroughs of process network behaviour by stepping back and forward over key
transition points and speeding up replay when the network stays in a steady state.

¿is proof of concept implementation was able to present the state visualisations necessary
to present the concept of deadlock in process-oriented programs. ¿e example program, as
introduced in Section 5.2.2, deadlock is produced in a ring of processes in which a single
value is being passed through by introducing a process which discards the value; Once the
value is discarded all processes in the network end up waiting to read from their neighbour.
¿e visualised state of this program once it reaches deadlock is shown in Figure 5.10, with all
channels blocked on reading from their neighbours.

¿e channel and value inspection functionalities were not implemented in this tool, meaning
the actual values communicated over channels must be reasoned about by following the
execution of the code. Adding these features would allow better reasoning for examples where
the actual values of tra�c on the network are signi�cant. In the deadlock example, only the
volume of tra�c in the network (i.e. a single message, transitioning to no messages) is used to
reason about the behaviour of the program. ¿is proof of concept implementation provided
feedback for further re�nement of the introspection design. An implementation tied into
the program design tool constructed in Chapter 4 would bene�t from layout speci�ed by
the user and produce an environment in which programs can be both visually designed and
debugged. ¿e potential for such an implementation is discussed as further work in Chapter
6.

168 CHAPTER 5. INTROSPECTION AND DEBUGGING

Figure 5.10:¿e TC1 visualisation tool showing a program intentionally designed to deadlock and
informing the user of the deadlock condition.

Chapter 6

Conclusions and Further Work

¿rough re-design and re-implementation of existing robot architectures and hardware
interfaces, this thesis has established a number of patterns and principles for the application
of process-oriented concurrency to the problem of robot control. ¿is work has aimed
to demonstrate the suitability of the process-oriented programming model for robotics,
due to a closeness of mapping between the robotics problem domain and process-oriented
programming.

¿is thesis has presented interfaces and concurrent architectures which allow the expression
of robot control as message passing data-�ow, and that the application of these parallel
programming abstractions in the context of small embedded platforms is practical – for
example, even on a platform running an interpreted occam-pi run-time response times were
equivalent or better than from a native-C implementation. However, while the applicability
and suitability of process-oriented programming for robotics has been established for small-
scale example programs, this work forms only a basis for investigation into its suitability to
larger scale programs or industrial robot control. As detailed in Section 1.3, thework presented
in this thesis has already been extended by researchers investigating the applicability of
process-oriented robot architectures to larger scale control programs.

¿is thesis has aimed to facilitate learning and reasoning about program design and behaviour
through exploitation of visual representations of process-oriented programs. Building on
successes and a rich history of visual programming for both robotics and process-oriented
programming, this work aimed to provide tooling suited to both problem domain and
programming model. ¿rough the design and implementation of a tool allowing the creation
of programs purely through composition of existing components, the feasibility of using top-

170 CHAPTER 6. CONCLUSIONS AND FURTHERWORK

level design as an implementation tool for very simple programs using prede�ned components
has been established.

Scaling a visual model beyond small numbers of processes and managing complexity has
not been addressed in this tool and remains an issue for the application of these concepts
to general purpose process-oriented programming. Signi�cant limitations exist in a purely
compositional tool such as the one presented here. Any signi�cant pedagogic experiences
of process-oriented programming typically introduce custom sequential logic and require
the design of new components; while a visual model has been designed, bridging the gap
between textual, sequential logic and high level design is necessary for such a tool to be
generally applicable. Design constraints for extending visual programming tools to capture
the dynamics of run-time process and network creation (a�orded by advanced language
features in occam-pi) have been raised and are fertile ground for future research; this area
has signi�cant application to complex emergent systems and modelling as well as robotics.

¿is thesis has also demonstrated the application of visual representations to elucidating
the runtime behaviour (e.g process state change and channel history) of a process-oriented
program, allowing programmers to reason about program behaviour using a model closer to
that used its design. A program introspection tool has been presented which demonstrates the
collection and presentation of run-time state through visualisations that re�ect the process
network diagrams used in program design.¿e utility of this tool in explaining and reasoning
about concurrency errors in process-oriented programs has been demonstrated.

¿e introspection tool presented in this thesis is limited in that it o�ers only post-mortem
visualisation of a program and a number of processing steps are needed to generate the
visualisations and animations of the program. To be integrated into the development cycle
of a process-oriented program, such a tool would need to be able to control and re�ect live
execution of the program, together with the ability to visualise larger systems, with hundreds,
thousands or even millions of processes in a meaningful manner. While some facilities have
been designed and implemented for the management of complexity, through the hiding or
showing the context of a particular process, where hierarchies are �at and there are large
numbers of processes at the same level these techniques are less e�ective.

6.1. FUTUREWORK: PROCESS ARCHITECTURES FOR ROBOTICS 171

6.1 Future Work: Process Architectures for Robotics

¿is section details extensions to the work on process-oriented robotics architectures presen-
ted in Chapter 3. ¿ese process-oriented robotics architectures form a basis from which
further architectures or platforms can be added and evaluated. Additional programming
language features or libraries may be employed in further extensions to the work to invest-
igate alternate or specialised implementations of process-oriented robot architectures for
particular hardware platforms or computationally di�cult tasks.

6.1.1 Hybrid Architectures

Work reported in this thesis to apply robot architectures in the process-oriented model
focuses on behavioural robotics, but there is signi�cant use of hybrid architectures in mobile
robots. Hybrid architectures such as Connell’s SSS [Con92] and Gat’s ATLANTIS [Gat92]
are candidates for implementation as process architectures to fully evaluate the abilities of a
process-oriented model in applying across robotics architectures.

6.1.2 Platforms

¿e types of robotics platform available have expanded considerably since the outset of this
work; small platforms capable of �ight are now available commercially and the next logical
step beyond small robots for motivation would be these kinds of unique problem domains.
Armstrong et al. have successfully explored the use of the Transterpreter and occam-pi on
the Arduino micro-controller for �ight control on a glider, a problem which emphasises
the importance of response speed and feedback control [APBSJ11]. ¿e Arduino support
libraries have already been applied successfully for robotics by a team entering the Trinity
College Fire Fighting Home Robot contest [HCM+12].

More recently, the Raspberry Pi, an ARM-based System on a Chip (SoC) embedded board
capable of running a full Linux operating system for $25 has attracted signi�cant attention
for lowering the barriers of entry to computing and use in education [Ras13]. Commodity
platforms like the Raspberry Pi and Arduino are excellent platforms to provide distributions
and tools for exploring hardware control and robotics due to their widespread availability
and the hobbyist communities surrounding them. Small computers and embedded boards
suitable for building mobile robots have also become more available; the Arduino embedded

172 CHAPTER 6. CONCLUSIONS AND FURTHERWORK

board has been a fruitful target of more recent work by Jadud et. al. to provide a platform
library called Plumbing for introductory electronics and embedded systems programming
with the Arduino [JJK+13]. ¿ese embedded boards designed for hardware experimentation
present a target for application of the visual programming environment detailed in this thesis;
enabling a cross-domain constructivist approach to both hardware and so ware design.

6.1.3 Dynamic occam-pi language features

¿e process-oriented implementations of established robot architectures detailed in this
thesis have, in the most part, not made use of the dynamic language features present in
occam-pi. ¿is has been due to the relative di�culty of implementing the underlying support
for these instructions when porting the virtual machine runtime to environments without
an underlying operating system. Use of these functions enables dramatic performance op-
timisation in cases where large data is being communicated between processes; this has been
the only application to date in providing acceptable performance when handling camera
frames on the Surveyor SRV-1.

In occam-pi it is possible to create and connect channels and processes at run time. ¿is
dynamic recon�guration may be combined with existing robot architectures to allow them to
adapt to environmental conditions or changes in robot hardware con�guration. Application of
dynamic recon�gurationmay permit relatively static pre-de�ned hierarchical control systems
to be controlled at a higher level by reactive, behavioural elements. ¿ere are challenges in
the graphical construction of such programs, as the changing process network would need
to be represented in a number of states at design-time.

¿e application of dynamic channel and process creation language features, introduced in
occam-pi, may be applied to the design of hardware interface processes. Current approaches
use processes which supply a channel interface providing a feed of incoming sensor data, or
accept a client/server command protocol (as described in Section 3.1.6. Designing process
interfaces which require subscription to a feed of values from a sensor process delivered at
a speci�c rate would make the development of e�cient, event-driven systems with many
levels of behaviour more practical. ¿e e�ective use of an event driven model would provide
power saving opportunities; when using a sparse communication model the system itself
could sleep in the gaps between responses, lengthening battery life.

A similar practice for control of motors and camera access, where multiple sets of behaviour
can share access through an arbiter would also help with e�ectivelymultiplexing input and

6.1. FUTUREWORK: PROCESS ARCHITECTURES FOR ROBOTICS 173

output to the platform from the highly concurrent control program. Investigation into the
use of processes for hardware abstraction, via the use of PROTOCOL inheritance could allow
e�ective component and program re-use between di�erent robotics platforms.

6.1.4 Parallel Languages and Robot Control Frameworks

In applying a parallel programming language to robotics, there are a number of other lan-
guages with which it would be useful to compare and contrast occam-pi. For small scale
robotics, Gostai SAS’s Universal Real-time Behaviour Interface (URBI) supplies a universal
platform for a number of robots which provides a parallel, event-driven programming lan-
guage [Gos08]. URBI is supplied with a graphical programming environment based on state
diagrams, and has a number of features for concurrent execution of code. A less educational
and more industrial platform is supplied by Evolution Robotics in the form of the Evolution
Robotics So ware Platform (ERSP) [MOP05]. ERSP uses Python program code or a graph-
ical behaviour composer to build systems from prede�ned components, speci�cally a range
of vision-processing, mapping and localisation algorithms supplied with the package itself.

As presented in Section 3.4, the Robot Operating System (ROS) has emerged as a popular
middleware framework for integrating disparate so ware components for robotics. ¿e
creation of a ROS client library for a process-oriented language, such as occam-pi, would
permit the creation of systems in ROS which are able to take advantage of �ne grained
concurrency. Using ROS to interface to third party libraries such as Player or OpenCV would
avoid the foreign function and wrapping complexities detailed in Section 3.1.3, providing a
message passing interface (albeit asynchronous) to these libraries from the process-oriented
environment.

Other parallel programming languages are also a target for examination, as the process-
oriented paradigm can be applied in languages outside of occam-pi. Ada has been used for
real-time robotic control and shown promise as a teaching language on small robots in
the classroom [SB94, FME01, Fag03], making it an excellent choice to examine for design
paradigms we would like to replicate using occam-pi or as a target for code generation. Erlang
has had minor usage in autonomous mobile robotics, but has not seen signi�cant use due
to the requirements of its runtime environment. ¿e Actor model of asynchronous process
communication can be replicated on top of occam-pi, and as such it is useful to examine
approaches taken so far [San07]. Even in the absence of an Erlang runtime suitable for use
on small robot platforms, the principles of the Actor model could be explored using the

174 CHAPTER 6. CONCLUSIONS AND FURTHERWORK

Transterpreter runtime and asynchronous occam-pi programs.

6.1.5 Network Distribution

Many small robotics platforms are network aware and can be connected to a host system via
Bluetooth [Blu07], Zigbee [IEE03] orWiFi [IEE99].¿ese connections function traditionally
to allow tele-operation by control programswritten for and running on the host system, or the
presentation of an Operator Control Unit (OCU) visualising the sensor data and providing a
control panel for the actuators on the platform. Previous explorations of occam-pi robotics
have traditionally executed the control program on the robot itself, allowing it to operate
independently and taking advantage of the very low memory and storage requirements of
the virtual machine runtime.

As the robot control programs we design are already constructed of communicating parallel
processes there is potential for these processes to be distributed across hosts without sig-
ni�cant restructuring of the program to use an external middleware layer. As discussed in
the previous section, a number of robotics frameworks provide middleware to facilitate the
co-ordination of independent processes to form a single system.¿e advantage of using a net-
work library in occam-pi is consistency of model; all communications inside the program and
between the components can be reasoned about as synchronous channel communications.

Network distribution of process network components allows latency sensitive processing
(such as processing image frames) to be done on the robot platform, and more complex, less
temporal, behaviours to be computed on the host system.

¿e KRoCoccam-pi runtime contains a library called Pony, which allows occam-pi channels
to be routed over TCP/IP networks between clusters of computers [Sch06]. Pony requires
a separate server allowing the nodes to �nd each other and is relatively heavyweight, we
would prefer to take advantage of the fact that we are using a virtual machine runtime. We
envisage that a more straightforward method for linking a single host to a robot via stub
processes executing concurrently with the user’s programs on the robot and desktop which
accept network communications and marshal them over the network could be created, or
that the virtual machine runtime could be enhanced to support network transparency.

In terms of a visual tool, being able to graphically move processes between the two di�erent
targets (host computer or robot platform), recon�guring the distribution of the network
would be a large step forward for examining distribution patterns. In combination with

6.2. FUTUREWORK: VISUAL DESIGN AND DEBUGGING 175

debugging information exposed from the runtime environment about the number and
size of channel communications, the load and latency of particular connections could be
annotated, allowing di�erent distribution patterns to be evaluated.

6.1.6 Multi-core and Many-core Robotics

¿e Transterpreter Virtual Machine is not multi-threaded, making the use of occam-pi on
the TVM concurrent but not parallel. Given the availability of multi-core and many-core
embedded boards with low power consumption and appropriate form factors for small robots
it would be interesting to write control programs which take full advantage of robot platforms
equipped with hardware parallelism. Multi-core algorithms for occam-pi scheduling have
already been implemented in CCSP by Ritson [RSB12] and could be reused in enhancing the
Transterpreter with support for scheduling processes across multiple cores.

6.2 Future Work: Visual Design and Debugging

¿is section details extensions to the visual programming demonstrator tool, POPed, shown
in Chapter 4 and the program introspection tool, TC1, presented in Chapter 5

6.2.1 Visual Programming

¿e POPed visual programming demonstrator tool described in Chapter 4 is currently re-
stricted to composing process networks; it is only a starting point in the development of a
pedagogic environment for process-oriented programming. ¿e aggregation of the features
of past tools and opinionated choices made whilst designing the demonstrator environ-
ment represent only a single data point in forming a pedagogically sound programming
environment. ¿e use of feedback or a formal user study from the classroom would enable
the development of a pedagogic tool for teaching parallel programming based on sound
principles. Adapting the environment to make it useful in more problem domains, providing
di�erent sets of processes and access to the various libraries outside of robotics would widen
the environment’s application beyond robotics.

E�ectively combining both design and debugging would provide an end-to-end visual envir-
onment for process-oriented programming. As discussed in Section 4.4.8, library choices have

176 CHAPTER 6. CONCLUSIONS AND FURTHERWORK

hampered implementation of the tool and continue tomake the tool fragile. Re-implementing
the program builder using Javascript and HTML5 would signi�cantly widen the reach of the
so ware and allow embedding of process network diagrams in webpages.

6.2.2 Formal Visual Language Design

While consideration has been made to existing practices in drawing diagrams of process-
oriented programs, there is signi�cant additional scope in designing a visual language based
directly on programmers’ mental models. ¿e work of Petre and Blackwell in relating cognit-
ive processes to visual programmingmethodologies [PB99] andWhitney and Blackwell’s later
work surveying the cognitive e�ects of visual programming in LabVIEW [WB01] provide a
background to work at the intersection of cognitive processes and visual languages. Building
a visual programming model for process-oriented programming based on cognition research
and mental models may yield improvements in representation beyond those organically
discovered by the evolution of diagrams and the study conducted in Section 4.1. Formally
documenting the semantics of process network diagrams would be of aid to the process-
oriented programming community, giving a �xed point of reference and allowing better
re-use of so ware components and tools.

6.2.3 Code Editing

¿e demonstrator environment, while allowing composition of processes already de�ned
in its toolbox, does not allow the programmer to create new processes from scratch. A
number of tools identi�ed in Section 4.2.1, most notably Scratch, use an entirely visual syntax
for sequential logic and program composition. While the application of a framework such
as OpenBlocks [Roq07] would permit the implementation of occam-pi syntax as a visual
language, this would leave programmers with two visual programming models to interact
with which have little commonality.

¿e ability to express sequential logic and algorithms is a strength of textual code. Rather
than implement a second visual language, is desirable to provide basic text editing features
such that new processes may be de�ned within the POPed environment. While adding this
editing ability, it is desirable to constrain and structure the interface of the process to the rest
of the program and limit the scope of textual code visible at a given time.

¿e current practice in process-oriented programs written in occam-pi is for all processes to

6.2. FUTUREWORK: VISUAL DESIGN AND DEBUGGING 177

be contained in a single �le, with the top level process at the bottom of the �le. ¿e default
process for execution being at the bottommeans process de�nitions are spatially and logically
close to one another. Inspired by the treatment of Java classes in Kölling’s BlueJ [KQPR03],
editing processes in isolation and using a structured UI for de�ning process interfaces would
emphasise the isolation of components within the process-oriented model.

6.2.4 Code Generation Advancements

As the visual environment primarily deals with dragging fully formed components together
and allowing connections between compatible interfaces, given a common communication
library between di�erent process-oriented languages, blocks could be implemented in a
number of di�erent programming languages and composed into a single program.A common
wire format for exchange of messages on channels has been previously suggested, for both
local and networked communication between process-oriented programs. ¿is would open
up interesting possibilities of swapping block implementations between languages; if a robot
program was to be distributed between a host computer and some activity on the robot itself,
blocks moved to the robot could use occam-pi implementations where the host used JCSP
implementations. Having this �exibility built in would make moving processes between host
and robot to achieve performance straightforward, given tools to monitor performance and
design e�ective distribution strategies as discussed below.

6.2.5 Introspection

In Chapter 5 this thesis presents the design and implementation of a tool supporting the
run-time state inspection, or ‘introspection’ of process-oriented programs. Development
of this introspection tool required the design and implementation of underlying support
in the virtual machine to expose control over program execution and program state. ¿is
underlying support facilitates the creation of tools or additional so ware to observe and
interact with program execution for other purposes, such as visualising program performance
for optimisation or allowing live creation of programs.

178 CHAPTER 6. CONCLUSIONS AND FURTHERWORK

Program Optimisation

To be able to improve the performance of a system, it is �rst important to be able to observe its
behaviour and measure its performance. Tools for occam on the Transputer had the ability to
colour channels depending on the size of data or frequency of communication that occurred
along them.¿is was important in hardware, a channel could become a bottleneck for the
entire program. ¿is type of performance data and tra�c analysis would be generally useful
for modern occam-pi programs, to identify communication patterns which make certain
subsections of the program candidates for distribution across multiple physical hosts. If a
channel link communicated very infrequently with quite large chunks of data it would be
a good candidate to be sent across a network. Conversely, a channel communicating very
frequently with very small amounts of data would be an indication that two components
need low latency communication, and shouldn’t be distributed over the network.

Bibliography

[Abe09] Hal Abelson. App Inventor for Android. http://googleresearch.

blogspot.co.uk/2009/07/app-inventor-for-android.html, July
2009. 110

[Ade12] Adept MobileRobots. ARIA -MobileRobots Research and Academic Customer
Support. http://robots.mobilerobots.com/wiki/ARIA, March 2012. 60

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving large
scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint
Computer Conference, AFIPS ’67 (Spring), pages 483–485, New York, NY, USA,
1967. ACM. 27

[ABV07] Otto J. Anshus, John Markus Bjørndalen, and Brian Vinter. PyCSP - Com-
municating Sequential Processes for Python. In Alistair A. McEwan, Wilson
I�ll, and Peter H. Welch, editors, Communicating Process Architectures 2007,
volume 65 of Concurrent Systems Engineering, pages 229–248, Amsterdam, ¿e
Netherlands, jul 2007. IOS Press. 29, 136

[Arc11] Katrina Archer. Practical Game Architecture for Multi-core Sys-
tems. http://software.intel.com/sites/billboard/article/

practical-game-architecture-multi-core-systems, November 2011.
26

[Ark87] Ronald C. Arkin. Motor schema based navigation for a mobile robot: An
approach to programming by behavior. In IEEE International Conference on
Robotics and Automation, volume 4, pages 264–271, Mar 1987. 87

[Ark98] Ronald C. Arkin. Behavior-based Robotics. MIT Press, Cambridge, MA, USA,
1998. 86

http://googleresearch.blogspot.co.uk/2009/07/app-inventor-for-android.html
http://googleresearch.blogspot.co.uk/2009/07/app-inventor-for-android.html
http://robots.mobilerobots.com/wiki/ARIA
http://software.intel.com/sites/billboard/article/practical-game-architecture-multi-core-systems
http://software.intel.com/sites/billboard/article/practical-game-architecture-multi-core-systems

180 BIBLIOGRAPHY

[AB97] Ronald C. Arkin and Tucker Balch. AuRA: Principles and Practice in Review.
Journal of Experimental and¿eoretical Arti�cial Intelligence, 9:175–189, 1997.
87

[ARM12] ARM Ltd. Cortex-A9 Processor. http://www.arm.com/products/

processors/cortex-a/cortex-a9.php, March 2012. 26

[APBSJ11] Ian Armstrong, Michael Pirrone-Brusse, A Smith, and Matthew C. Jadud. The
Flying Gator: Towards Aerial Robotics in occam-pi. In Peter H.Welch, Adam T.
Sampson, Jan B. Pedersen, Jon Kerridge, Jan F. Broenink, and Frederick R. M.
Barnes, editors, Communicating Process Architectures 2011, pages 329–340, jun
2011. 171

[AVWW93] Joe Armstrong, Robert Virding, Claes Wikström, and Mike Williams. Concur-
rent programming in erlang, 1993. 29, 40

[ABL92] Mats Aspnäs, Ralph-Johan Back, and ¿omas Långbacka. Millipede: A pro-
gramming environment providing graphical support for parallel programming.
In Proceedings of the European Workshop on Parallel Computing, pages 236–247,
1992. 114

[Bar02] David J. Barnes. Teaching Introductory Java through LEGOMINDSTORMS
Models. In Proceedings of the 33rd SIGCSE technical symposium on computer
science education, pages 147–151. ACM, February 2002. 44

[Bar05] David J. Barnes. ROBOLAB-based Key Stage 3 Programming Materials. http:
//www.cs.kent.ac.uk/people/staff/djb/robolab/, October 2005. 111

[Bar00] Frederick R. M. Barnes. Blocking System Calls in KRoC/Linux. In Peter H.
Welch and Andrè W. P. Bakkers, editors, Communicating Process Architectures
2000, pages 155–178, September 2000. 59

[Bar05] Frederick R. M. Barnes. Interfacing C and occam-pi. In Jan F. Broenink, Her-
man W. Roebbers, Johan P. E. Sunter, Peter H. Welch, and David C. Wood,
editors, Communicating Process Architectures 2005, volume 63 of Concurrent Sys-
tems Engineering Series, pages 249–260, IOS Press,¿e Netherlands, September
2005. IOS Press. 59

http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.arm.com/products/processors/cortex-a/cortex-a9.php
http://www.cs.kent.ac.uk/people/staff/djb/robolab/
http://www.cs.kent.ac.uk/people/staff/djb/robolab/

BIBLIOGRAPHY 181

[BW96] David J. Beckett and Peter H. Welch. A Strict occamDesign Tool. In Chris R.
Jesshope andA. Shasha Shafarenko, editors,Proceedings of UKParallel ’96, pages
53–69, Guildford, UK, July 1996. Springer-Verlag, London. ISBN 3-540-76068-7.
115

[BCHS00] Michael Bedy, Steve Carr, Xianlong Huang, and Ching-Kuang Shene. A visual-
ization system for multithreaded programming. In SIGCSE ’00: Proceedings
of the thirty-�rst SIGCSE technical symposium on Computer science education,
pages 1–5, New York, NY, USA, 2000. ACM Press. 52

[Beg96] Andrew Begel. LogoBlocks: A Graphical Programming Language for Interact-
ing with the World. Technical report, MIT Media Laboratory, Cambridge, MA,
USA, May 1996. 109

[BK07] Andrew Begel and Eric Klopfer. Starlogo TNG: An introduction to game
development. Journal of E-Learning, 2007. 109

[BA07] Mordechai Ben-Ari. TeachingConcurrency andNondeterminismwith Spin. In
Proceedings of the 12th annual SIGCSE conference on Innovation and technology
in computer science education, ITiCSE ’07, pages 363–364, New York, NY, USA,
2007. ACM. 50

[BAK99] Mordechai Ben-Ari and Yifat Ben-David Kolikant. ¿inking parallel: the
process of learning concurrency. In ITiCSE ’99: Proceedings of the 4th annual
SIGCSE/SIGCUE ITiCSE conference on Innovation and technology in computer
science education, pages 13–16, New York, NY, USA, 1999. ACM Press. 50

[BE02] Alan F. Blackwell and Yuri Engelhardt. A meta-taxonomy for diagram research.
In Michael Anderson, BerndMeyer, and Patrick Olivier, editors,Diagrammatic
Representation and Reasoning, pages 47–64. Springer London, 2002. 104

[BKM+12] Douglas Blank, Jennifer S. Kay, James B. Marshall, Keith O’Hara, and Mark
Russo. Calico: a multi-programming-language, multi-context framework de-
signed for computer science education. In Proceedings of the 43rd ACM technical
symposium on Computer Science Education, SIGCSE ’12, pages 63–68, New York,
NY, USA, 2012. ACM. 43

182 BIBLIOGRAPHY

[BKMY03] Douglas Blank, Deepak Kumar, Lisa Meeden, and Holly Yanco. Pyro: A python-
based versatile programming environment for teaching robotics. In Journal of
Educational Resources in Computing (JERIC), pages 1–15, 2003. 43

[Blu07] Bluetooth SIG. Bluetooth Core Speci�cation v2.1+ EDR. http://bluetooth.
com/Bluetooth/Technology/Building/Specifications/Default.htm,
July 2007. 174

[Boe05] Hans-J. Boehm. ¿reads cannot be implemented as a library. In PLDI ’05:
Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, pages 261–268, New York, NY, USA, 2005. ACM
Press. 29, 63

[Bra86] Valentino Braitenberg. Vehicles: Experiments in Synthetic Psychology. MIT
Press, Cambridge, MA, USA, 1986. 69, 129

[BH75] Per Brinch Hansen. The programming language Concurrent Pascal. IEEE
Transactions on So ware Engineering, SE-1(2):199–207, 1975. 15

[BGL05] Jan F. Broenink, Marcel A. Groothuis, and Geert K. Liet. gCSP occamCode
Generation for RMoX. In Communicating Process Architectures 2005, pages
375–383, sep 2005. 9, 116, 117

[BJ04] Jan F. Broenink and Dusko S. Jovanovic. Graphical Tool for Designing CSP
Systems. In Ian R. East, David Duce, Mark Green, Jeremy M. R. Martin, and
Peter H. Welch, editors, Communicating Process Architectures 2004, pages 233–
252, September 2004. 116

[Bro85] Rodney A. Brooks. A robust layered control system for a mobile robot. Tech-
nical report, MIT, Cambridge, MA, USA, 1985. 130

[Bro86] Rodney A. Brooks. A Robust Layered Control System for aMobile Robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, March 1986. 72

[Bro89] Rodney A. Brooks. A robot that walks; emergent behaviors from a carefully
evolved network. Technical report, MIT, Cambridge, MA, USA, 1989. 73, 82

[Bro07] Neil C. C. Brown. C++CSP2: AMany-to-Many ThreadingModel for Multicore
Architectures. In Alistair A. McEwan, Wilson I�ll, and Peter H. Welch, editors,
Communicating Process Architectures 2007, pages 183–205, jul 2007. 29

http://bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm
http://bluetooth.com/Bluetooth/Technology/Building/Specifications/Default.htm

BIBLIOGRAPHY 183

[BS09] Neil C. C. Brown and Marc L. Smith. Relating and Visualising CSP, VCR and
Structural Traces. In Peter H. Welch, HermanW. Roebbers, Jan F. Broenink,
Frederick R. M. Barnes, Carl G. Ritson, Adam T. Sampson, Gardiner S. Stiles,
and Brian Vinter, editors, Communicating Process Architectures 2009, pages
89–103, nov 2009. 154

[Bun09] David P. Bunde. A short unit to introduce multi-threaded programming.
Journal of Computing Sciences in Colleges, 25(1):9–20, October 2009. 21

[CMS03] Steve Carr, Jean Mayo, and Ching-Kuang Shene. ¿readmentor: a pedagogical
tool for multithreaded programming. J. Educ. Resour. Comput., 3(1):1, 2003. 52

[Con89] Jonathan H. Connell. A colony architecture for an arti�cial creature. Technical
report, MIT Arti�cial Intelligence Laboratory, Cambridge, MA, USA, 1989. 82,
84

[Con92] Jonathan H. Connell. SSS: a hybrid architecture applied to robot navigation.
In Robotics and Automation, 1992. Proceedings of the 1992 IEEE International
Conference on, pages 2719–2724 vol.3, 1992. 171

[CRS98] Philip T. Cox, Christopher C. Risley, and Trevor J. Smedley. Toward concrete
representation in visual languages for robot control. Journal of Visual Languages
& Computing, 9(2):211–239, 1998. 108

[CS98] Philip T. Cox and Trevor J. Smedley. Visual programming for robot control.
In VL ’98: Proceedings of the IEEE Symposium on Visual Languages, page 217,
Washington, DC, USA, 1998. IEEE Computer Society. 108

[DHWN94] Mark Debbage, Mark Hill, Sean Wykes, and Denis Nicole. Southampton’s
portable occam compiler (spoc). In Proceedings of WoTUG-17: Progress in
Transputer and occam Research, volume 38 of Transputer and occam Engineering,
pages 40–55. IOS Press, 1994. 31

[Dij87] Edsger W. Dijkstra. Twenty-eight years (EWD1000). Circulated privately,
January 1987. 49

[Dim09] Damian J. Dimmich. AProcess OrientedApproach to Solving Problems of Parallel
Decomposition and Distribution. PhD thesis, University of Kent, Canterbury,
Kent, England, June 2009. v, 26

184 BIBLIOGRAPHY

[DJ05] Damian J. Dimmich and Christan L. Jacobsen. A Foreign Function Interface
Generator for occam-pi. In Jan F. Broenink, HermanW. Roebbers, Johan P. E.
Sunter, Peter H. Welch, and David C. Wood, editors, Communicating Process
Architectures 2005, pages 235–248, Amsterdam,¿e Netherlands, September
2005. IOS Press. 59

[DJJ06] Damian J. Dimmich, Christian L. Jacobsen, and Matthew C. Jadud. A Cell
Transterpreter. In Peter H.Welch, JonM. Kerridge, and Frederick R. M. Barnes,
editors, Communicating Process Architectures 2006, pages 215–224, Amsterdam,
¿e Netherlands, September 2006. IOS Press. 57

[ECR00] Ben Erwin, Martha Cyr, and Chris Rogers. LEGO engineer and ROBOLAB:
Teaching engineering with LabVIEW from kindergarten to graduate school.
International Journal of Engineering Education, 16(3):2000, 2000. 9, 110, 111

[Ext00] Chris Exton. Elucidate: a tool to aid comprehension of concurrent object ori-
ented execution. In ITiCSE ’00: Proceedings of the 5th annual SIGCSE/SIGCUE
ITiCSE conference on Innovation and technology in computer science education,
pages 33–36, New York, NY, USA, 2000. ACM. 51

[Fag03] Barry S. Fagin. Ada/Mindstorms 3.0. Robotics & Automation Magazine, IEEE,
10(2):19–24, 2003. 44, 173

[FME01] Barry S. Fagin, Laurence D.Merkle, and¿omasW. Eggers. Teaching computer
science with robotics using ada/mindstorms 2.0. Ada Lett., XXI(4):73–78, 2001.
173

[Fek09] Alan D. Fekete. Teaching about threading: where and what? SIGACT News,
40(1):51–57, February 2009. 21

[FMN08] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-lived robot
genes. Robotics and Autonomous Systems, 56(1):29–45, January 2008. 92

[For00] Formal Systems (Europe) Ltd., 3, Alfred Street, Oxford. OX1 4EH, UK. FDR2
User Manual, May 2000. 51

[Gai86] JasonGait. A probe e�ect in concurrent programs. So w. Pract. Exper., 16(3):225–
233, March 1986. 147, 153

BIBLIOGRAPHY 185

[Gat92] Erann Gat. Integrating planning and reacting in a heterogeneous asynchronous
architecture for controlling real-worldmobile robots. In Proceedings of the tenth
national conference on Arti�cial intelligence, AAAI’92, pages 809–815. AAAI
Press, 1992. 171

[GVH03] Brian Gerkey, Richard T. Vaughan, and Andrew Howard. ¿e Player/Stage
Project: Tools for Multi-Robot and Distributed Sensor Systems. In Proceedings
of the 11th International Conference on Advanced Robotics (ICAR 2003), pages
317–323, Coimbra, Portugal, June 2003. 45, 61, 92

[GIL+95] Jim Gindling, Andri Ioannidou, Jennifer Loh, Olav Lokkebo, and Alexander
Repenning. LEGOsheets: a rule-based programming, simulation and manipu-
lation environment for the LEGO Programmable Brick. In VL ’95: Proceedings
of the 11th International IEEE Symposium on Visual Languages, page 172, Wash-
ington, DC, USA, 1995. IEEE Computer Society. 108

[GvN63] Herman H. Goldstine and John von Neumann. Planning and coding of prob-
lems for an electronic computing instrument, part ii. In A.H. Traub, editor,
John von Neumann, Collected Works Volume V, Design of computers, theory of
automata and numerical analysis, page 30. Pergamon Press, Oxford, 1963. 9,
103

[Goo12] Google, Inc. ¿e Go Programming Language. http://golang.org, March
2012. 29

[Gor08] Howard Gordon. Surveyor SRV-1 Black�n Robot. http://www.surveyor.
com/, July 2008. 65

[Gos08] Gostai SAS. URBI: Universal Real-time Behavior Interface. http://www.

gostai.com/, August 2008. 92, 173

[Gow94] Jay Gowdy. Sausages: Between planning and action. Technical Report CMU-
RI-TR-94-32, Robotics Institute, Pittsburgh, PA, September 1994. 90

[GP96] ¿omasR.G.Green andMarian Petre. Usability analysis of visual programming
environments: A ‘cognitive dimensions’ framework. Journal of Visual Languages
and Computing, 7(2):131–174, 1996. 16

http://golang.org
http://www.surveyor.com/
http://www.surveyor.com/
http://www.gostai.com/
http://www.gostai.com/

186 BIBLIOGRAPHY

[Gro11] ¿omas R. Gross. Breadth in depth: a 1st year introduction to parallel pro-
gramming. In Proceedings of the 42nd ACM technical symposium on Computer
science education, SIGCSE ’11, pages 435–440, New York, NY, USA, 2011. ACM.
21

[HCM+12] Kathryn Hardey, Eren Corapcioglu, Molly Mattis, Mark Goadrich, and Mat-
thew C. Jadud. Exploring and evolving process-oriented control for real and
virtual �re �ghting robots. In Proceedings of the fourteenth international confer-
ence on Genetic and evolutionary computation conference, GECCO ’12, pages
105–112, New York, NY, USA, 2012. ACM. 171

[Har94] Stephen J. Hartley. Animating operating systems algorithms with xtango. In
SIGCSE ’94: Proceedings of the twenty-� h SIGCSE symposium on Computer
science education, pages 344–348, New York, NY, USA, 1994. ACM Press. 53

[HE91] Michael T. Heath and Jennifer A. Etheridge. Visualizing the Performance of
Parallel Programs. IEEE So ware, 8(5):29–39, September 1991. 52

[HBS73] Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular actor
formalism for arti�cial intelligence. In Proceedings of the 3rd international joint
conference on Arti�cial intelligence, IJCAI’73, pages 235–245, San Francisco, CA,
USA, 1973. Morgan Kaufmann Publishers Inc. 29

[Hil02] Gerald H. Hilderink. A Graphical Modeling Language for Specifying Concur-
rency based on CSP. In James Pascoe, Roger Loader, and Vaidy Sunderam,
editors, Communicating Process Architectures 2002, pages 255–284, September
2002. 116

[Hoa85] Charles A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1985. 15, 28, 30

[Hol97] Gerard J. Holzmann. ¿e model checker spin. IEEE Transactions on So ware
Engineering, 23:279–295, 1997. 50

[HPR89] HoushengHu, Penny J. Probert, andBobby S. Y. Rao. ATransputerArchitecture
for Sensor-based AutonomousMobile Robots. In Intelligent Robots and Systems
’89. ¿e Autonomous Mobile Robots and Its Applications. IROS ’89. Proceedings.,
IEEE/RSJ International Workshop on, pages 297 –303, September 1989. 41

BIBLIOGRAPHY 187

[IEE01] IEEE. IEEE standard test access port and boundary scan architecture. IEEE
Standard 1149.1-2001, pages 1–212, 2001. 162

[IEE99] IEEE 802.11 Working Group. Wireless LAN medium access control (MAC)
and physical layer (PHY) speci�cation. Standard, IEEE, 1999. 174

[IEE03] IEEE 802.15 Working Group. Wireless medium access control (MAC) and
physical layer (PHY) speci�cations for low-rate wireless personal area networks
(WPANs). Standard 802.15.4-2003, IEEE, 2003. 174

[INM84] INMOS Limited. occam2 Reference Manual. Prentice Hall, 1984. ISBN: 0-13-
629312-3. 15

[Int04] Intel Corporation. Architecting the Era of Tera. Technical report, Intel Research
and Development, 2004. 26

[Jac06] Christian L. Jacobsen. A Portable Runtime for Concurrency Research and Applic-
ation. PhD thesis, University of Kent, Canterbury, Kent, England, December
2006. 10, 19, 32, 57, 120, 157, 158

[JJ04] Christian L. Jacobsen andMatthew C. Jadud. The Transterpreter: A Transputer
Interpreter. In Dr. Ian R. East, Prof David Duce, Dr Mark Green, Jeremy M. R.
Martin, and Prof. Peter H. Welch, editors, Communicating Process Architectures
2004, volume 62 of Concurrent Systems Engineering, pages 99–106. IOS Press,
Amsterdam, September 2004. 17, 32

[JJ05] Christian L. Jacobsen and Matthew C. Jadud. Towards concrete concurrency:
occam-pi on the LEGO Mindstorms. In SIGCSE ’05: Proceedings of the 36th
SIGCSE technical symposium on Computer Science education, pages 431–435,
New York, NY, USA, 2005. ACM Press. 21, 41, 62

[JJ07] Christian L. Jacobsen and Matthew C. Jadud. Concurrency, Robotics and
RoboDeb. InAAAI Spring SymposiumonRobots andRobot Venues: Resources for
AI Education, Stanford, Palo Alto, CA, 2007. Association for the Advancement
of Arti�cial Intelligence. 7, 45, 46, 48, 61

[JCS03] Matthew C. Jadud, Brooke N. Chenoweth, and Jacob Schleter. Little languages
for little robots. PPIG, 2003. 44

188 BIBLIOGRAPHY

[JJK+13] Matthew C. Jadud, Christian L. Jacobsen, Omer Kilic, Adam T. Sampson, and
Jonathan Simpson. Concurrency.cc - parallel programming for the rest of us.
http://concurrency.cc, July 2013. 172

[JJRS08] MatthewC. Jadud, Christian L. Jacobsen, Carl G. Ritson, and Jonathan Simpson.
Safe parallelism for robotic control. In IEEE International Conference on Tech-
nologies for Practical Robot Applications (TePRA), November 2008. 20

[JJS10] Matthew C. Jadud, Christian L. Jacobsen, and Adam T. Sampson.
Plumbing for the Arduino. http://concurrency.cc/pdf/

plumbing-for-the-arduino.pdf, January 2010. 21

[JSJ08] Matthew C. Jadud, Jonathan Simpson, and Christian L. Jacobsen. Patterns for
programming in parallel, pedagogically. SIGCSE Bulletin, 40(1):231–235, 2008.
19, 93

[JE88] Dewi I. Jones and Paul M. Entwistle. Parallel computation of an algorithm
in robotic control. In CONTROL 88., IEE International Conference on, pages
438–443, April 1988. 40

[Ker84] Brian W. Kernighan. Unix for Beginners. Bell Laboratories, 1984. 153

[KS84] Jon M. Kerridge and Dan Simpson. ¿ree solutions for a robot arm controller
using pascal-plus, occam and edison. So ware: Practice and Experience, 14(1):3–
15, 1984. 40

[KQPR03] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosenberg. ¿e
BlueJ system and its pedagogy. Journal of Computer Science Education, 13(4),
December 2003. 18, 177

[KBB+08] Deepak Kumar, Douglas S. Blank, Tucker R. Balch, Keith J. O’Hara, Mark
Guzdial, and Stewart Tansley. Engaging computing students with ai and robot-
ics. In AAAI Spring Symposium: Using AI to Motivate Greater Participation in
Computer Science, pages 55–60. AAAI, 2008. 44

[LMC87] ¿omas J. LeBlanc and John M. Mellor-Crummey. Debugging parallel pro-
grams with instant replay. IEEE Trans. Comput., 36(4):471–482, April 1987.
154

http://concurrency.cc
http://concurrency.cc/pdf/plumbing-for-the-arduino.pdf
http://concurrency.cc/pdf/plumbing-for-the-arduino.pdf

BIBLIOGRAPHY 189

[Lyn] Lynxmotion, Inc. AH3-R Walking Robot. http://www.lynxmotion.com/
Category.aspx?CategoryID=92. 69

[Mae89a] Pattie Maes. ¿e dynamics of action selection. In IJCAI, pages 991–997, 1989.
85

[Mae89b] Pattie Maes. How to do the right thing. Technical report, Massachusetts
Institute of Technology, Cambridge, MA, USA, 1989. 85

[MBK+04] John Maloney, Leo Burd, Yasmin Kafai, Natalie Rusk, Brian Silverman, and
Mitchel Resnick. Scratch: A sneak preview. In C5 ’04: Proceedings of the Second
International Conference on Creating, Connecting and Collaborating through
Computing, pages 104–109, Washington, DC, USA, 2004. IEEE Computer Soci-
ety. 109

[Mar07] Fred G. Martin. Real robots don’t drive straight. In AAAI Spring Symposium:
Semantic Scienti�c Knowledge Integration, pages 90–94. AAAI, 2007. 44

[MW97] Jeremy M.R. Martin and Peter H. Welch. A Design Strategy for Deadlock-Free
Concurrent Systems. Transputer Communications, 3(4), August 1997. 69

[May83] David May. occam. ACM SIGPLAN Notices, 18(4):69–79, April 1983. 30

[MTWS78] David May, Richard J.B. Taylor, and Colin Whitby-Strevens. EPL - An Experi-
mental Language for Distributed Computing. In Trends and Applications 1978,
Gaithersburg, Maryland, May 1978. National Bureau of Standards. 30

[MH89] Charles E. McDowell and David P. Helmbold. Debugging concurrent programs.
ACM Comput. Surv., 21(4):593–622, December 1989. 147

[Mic08] Microso Corporation. Microso Robotics Studio: VPL Introduction. http:
//msdn.microsoft.com/en-us/library/bb483088.aspx, 2008. 9, 112, 113

[MIT02] MITMedia Lab. Introduction to Logo Blocks. http://llk.media.mit.edu/
projects/cricket/doc/help/logoblocks/startingwithlogoblocks.

htm, June 2002. 9, 110

[Mob] Mobile Robots, Inc. Pioneer 3-DXMobile Robot. http://www.activrobots.
com/ROBOTS/p2dx.html. 46

http://www.lynxmotion.com/Category.aspx?CategoryID=92
http://www.lynxmotion.com/Category.aspx?CategoryID=92
http://msdn.microsoft.com/en-us/library/bb483088.aspx
http://msdn.microsoft.com/en-us/library/bb483088.aspx
http://llk.media.mit.edu/projects/cricket/doc/help/logoblocks/startingwithlogoblocks.htm
http://llk.media.mit.edu/projects/cricket/doc/help/logoblocks/startingwithlogoblocks.htm
http://llk.media.mit.edu/projects/cricket/doc/help/logoblocks/startingwithlogoblocks.htm
http://www.activrobots.com/ROBOTS/p2dx.html
http://www.activrobots.com/ROBOTS/p2dx.html

190 BIBLIOGRAPHY

[Moo65] Gordon E. Moore. Cramming More Components onto Integrated Circuits.
Electronics, 38(8):114–117, April 1965. 26

[Moo99] James Moores. CCSP - A Portable CSP-Based Run-Time System Supporting C
and occam. In Barry M. Cook, editor, Proceedings of WoTUG-22: Architectures,
Languages and Techniques for Concurrent Systems, pages 147–169, mar 1999. 31

[MOP05] Mario E. Munich, Jim Ostrowski, and Paolo Pirjanian. ERSP: a so ware plat-
form and architecture for the service robotics industry. Intelligent Robots and
Systems, 2005. (IROS 2005). 2005 IEEE/RSJ International Conference on, pages
460–467, August 2005. 173

[NWN88] Fazel Naghdy, C. K. Wai, and Golshah Naghdy. Multiprocessing control of
robotic systems. In Robotics and Automation, 1988. Proceedings., 1988 IEEE
International Conference on, volume 2, pages 975–977, 1988. 40

[Nee08] JohnNeeson. occam-pi forMultiple Robotic Systems. Master’s thesis, University
of York, May 2008. 21, 82

[Nil84] Nils J. Nilsson. Shakey the robot. Technical Report 323, AI Center, SRI Interna-
tional, 333 Ravenswood Ave., Menlo Park, CA 94025, Apr 1984. 35

[Nog04] Marcus L. Noga. ¿e brickOS Home Page. http://brickos.sourceforge.
net, June 2004. 63

[oCC13] ACM/IEEE-CS Joint Task Force on Computing Curricula. Computer Science
Curricula 2013. Technical report, ACMPress and IEEE Computer Society Press,
December 2013. 26

[O’N87] Conor O’Neil. The TDS occam 2 debugging system. In Traian Muntean, editor,
OUG-7: Parallel Programming of Transputer Based Machines, pages 9–14, sep
1987. 156

[Pap80] Seymour Papert. Mindstorms: children, computers, and powerful ideas. Basic
Books, Inc., New York, NY, USA, 1980. 44

[Pap86] Seymour Papert. Constructionism: A new opportunity for elementary science edu-
cation. Massachusetts Institute of Technology, Media Laboratory, Epistemology
and Learning Group, 1986. 44

http://brickos.sourceforge.net
http://brickos.sourceforge.net

BIBLIOGRAPHY 191

[Par13] Parallela. Parallela Computer Speci�cations. http://www.parallella.org/
board/, June 2013. 27

[Pat81] Richard E. Pattis. Karel the Robot: A Gentle Introduction to the Art of Program-
ming. John Wiley & Sons, Inc., New York, NY, USA, 1981. 43

[PB99] Marian Petre and Alan F. Blackwell. Mental imagery in program design and
visual programming. International Journal of Human-Computer Studies, 51(1):7–
30, 1999. 176

[Poo96] Michael D. Poole. occam-for-all – Two Approaches to Retargeting the INMOS
occam Compiler. In Brian O’Neill, editor, Parallel Processing Developments –
Proceedings of WoTUG 19, pages 167–178, Nottingham-Trent University, UK,
March 1996. World occam and Transputer User Group, IOS Press, Netherlands.
ISBN 90-5199-261-0. 31

[Pos09] Jeremy C. Posso. occam-pi for Behaviour-based Robotics. Master’s thesis, ¿e
University of York, 2009. 21, 81, 82, 158

[PSST11] Jeremy C. Posso, Adam T. Sampson, Jonathan Simpson, and Jon Timmis.
Process-Oriented Subsumption Architectures in Swarm Robotic Systems. In
Peter H. Welch, Adam T. Sampson, Jan B. Pedersen, Jon Kerridge, Jan F. Broen-
ink, and Frederick R. M. Barnes, editors, Communicating Process Architectures
2011, volume 69 of Concurrent Systems Engineering, pages 303–316. IOS Press,
June 2011. 8, 20, 83

[Puc91] Miller S. Puckette. Combining Event and Signal Processing in the MAX Graph-
ical Programming Environment. Computer Music Journal, 15(3):68–77, Fall
1991. 118

[Puc96] Miller S. Puckette. Pure Data: another integrated computer music environment.
In Proceedings of the Second Intercollege Computer Music Concerts, pages 37–41,
1996. 118

[QCG+09] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, RobWheeler, and Andrew Y. Ng. ROS: an open-source Robot Operating
System. In ICRAWorkshop on Open Source So ware, 2009. 92

http://www.parallella.org/board/
http://www.parallella.org/board/

192 BIBLIOGRAPHY

[Ras13] Raspberry Pi Foundation. Raspberry Pi. http://www.raspberrypi.org,
June 2013. 171

[RAA+07] Charles Reinholtz, ¿omas Alberi, David Anderson, Andrew Bacha,
Cheryl Bauman, Stephen Cacciola, Patrick Currier, Aaron Dalton, Jesse
Farmer, Ruel Faruque, et al. DARPA Urban Challenge Technical
Paper. http://archive.darpa.mil/grandchallenge/TechPapers/

Victor_Tango.pdf, April 2007. 111

[RS95] Alexander Repenning and Tamara Sumner. Agentsheets: A Medium for Cre-
ating Domain-Oriented Visual Languages. IEEE Computer, 28(3):17–25, 1995.
108

[RMSS96] Mitchel Resnick, Fred G. Martin, Randy Sargent, and Brian Silverman. Pro-
grammable bricks: toys to think with. IBM Systems Journal, 35(3-4):443–452,
1996. 44, 109

[RSB12] Carl G. Ritson, Adam T. Sampson, and Frederick R.M. Barnes. Multicore
scheduling for lightweight communicating processes. Science of Computer
Programming, 77(6):727–740, June 2012. 175

[RS08] Carl G. Ritson and Jonathan Simpson. Virtual Machine-based Debugging for
occam-π. In Peter H.Welch, Susan Stepney, Fiona A. C. Polack, Frederick R. M.
Barnes, Alistair A. McEwan, Gardiner S. Stiles, Jan F. Broenink, and Adam T.
Sampson, editors, Communicating Process Architectures 2008, volume 66 of
Concurrent Systems Engineering, pages 293–307, Amsterdam, ¿e Netherlands,
September 2008. IOS Press. 20, 162

[Roq07] Ricarose V. Roque. Openblocks: an extendable framework for graphical block
programming systems. Master’s thesis, Massachusetts Institute of Technology,
2007. 110, 176

[Ros95] Julio K. Rosenblatt. DAMN: A distributed architecture for Mobile Navigation.
In H. Hexmoor and D. Kortenkamp, editors, proceedings of the 1995 AAAI
Spring Symposium on Lessons Learned from Implemented So ware Architectures
for Physical Agents, Menlo Park, CA, March 1995. AAAI Press. 90

[Sam06] Adam T. Sampson. What is Love? https://www.cs.kent.ac.uk/

research/groups/sys/wiki/LOVE, September 2006. 9, 118, 119

http://www.raspberrypi.org
http://archive.darpa.mil/grandchallenge/TechPapers/Victor_Tango.pdf
http://archive.darpa.mil/grandchallenge/TechPapers/Victor_Tango.pdf
https://www.cs.kent.ac.uk/research/groups/sys/wiki/LOVE
https://www.cs.kent.ac.uk/research/groups/sys/wiki/LOVE

BIBLIOGRAPHY 193

[Sam08] Adam T. Sampson. Process-Oriented Patterns for Concurrent So ware Engineer-
ing. PhD thesis, Computing, University of Kent, CT2 7NF, September 2008. 9,
93, 104, 105

[San07] Corrado Santoro. An Erlang framework for Autonomous Mobile Robots. In
Erlang ’07: Proceedings of the 2007 SIGPLAN workshop on Erlang Workshop,
pages 85–92, New York, NY, USA, 2007. ACM. 173

[SSKF95] Christian Scheidler, Lorenz Schäfers, and Ottmar Krämer-Fuhrmann. So -
ware engineering for parallel systems: the TRAPPER approach. In HICSS
’95: Proceedings of the 28th Hawaii International Conference on System Sciences
(HICSS’95), page 349, Washington, DC, USA, 1995. IEEE Computer Society. 9,
114, 115

[Sch06] Mario Schweigler. A Uni�ed Model for Inter- and Intra-processor Concurrency.
PhD thesis, Computing Laboratory, University of Kent, Canterbury, UK, Can-
terbury, Kent, CT2 7NF, United Kingdom, August 2006. 174

[SGS95] SGS-THOMSONMicroelectronics Limited. occam 2.1 reference manual, May
1995. 30

[SJ08] Jonathan Simpson and Christian L. Jacobsen. Visual Process-oriented Pro-
gramming for Robotics. In Peter H. Welch, Susan Stepney, Fiona A. C. Polack,
Frederick R. M. Barnes, Alistair A. McEwan, Gardiner S. Stiles, Jan F. Broenink,
and Adam T. Sampson, editors, Communicating Process Architectures 2008,
volume 66 of Concurrent Systems Engineering, pages 365–380, Amsterdam, ¿e
Netherlands, September 2008. IOS Press. 19

[SJJ06] Jonathan Simpson, Christian L. Jacobsen, andMatthew C. Jadud. Mobile Robot
Control: The Subsumption Architecture and occam-π. In Frederick R. M.
Barnes, Jon M. Kerridge, and Peter H. Welch, editors, Communicating Process
Architectures 2006, pages 225–236, Amsterdam,¿e Netherlands, September
2006. IOS Press. 19

[SJJ07] Jonathan Simpson, Christian L. Jacobsen, and Matthew C. Jadud. A Native
Transterpreter for the LEGOMindstorms RCX. In Alistair A. McEwan, Steve
Schneider, Wilson I�ll, and Peter H. Welch, editors, Communicating Process

194 BIBLIOGRAPHY

Architectures 2007, volume 65 of Concurrent Systems Engineering, Amsterdam,
¿e Netherlands, July 2007. IOS Press. 19

[SR09] Jonathan Simpson and Carl G. Ritson. Toward Process Architectures for Beha-
vioural Robotics. In Peter H. Welch, Herman W. Roebbers, Jan F. Broenink,
Frederick R. M. Barnes, Carl G. Ritson, Adam T. Sampson, Gardiner S. Stiles,
and Brian Vinter, editors, Communicating Process Architectures 2009, volume 67
of Concurrent Systems Engineering, pages 375–386, Amsterdam, ¿e Nether-
lands, November 2009. IOS Press. 20

[ST04] Matthew Slowe and Ben Tanner. Graphical Analysis Tool for occamResources.
Final year BSc project report, University of Kent, 2004. 9, 117, 118

[Sta95] John T. Stasko. ¿e PARADE environment for visualizing parallel program
executions: A progress report. Technical Report GIT-GVU-95-03, Georgia
Institute of Technology, 1995. 52

[SK93] John T. Stasko and Eileen Kraemer. A methodology for building application-
speci�c visualizations of parallel programs. Journal of Parallel and Distributed
Computing, 18(2):258–264, 1993. 52

[SB94] Robert D. Steele and Paul G. Backes. Ada and real-time robotics: Lessons
learned. Computer, 27(4):49–54, 1994. 173

[Ste87] Susan Stepney. GRAIL: Graphical representation of activity, interconnection
and loading. In Traian Muntean, editor, 7th Technical meeting of the occamUser
Group,Grenoble, France. IOS Amsterdam, 1987. 10, 114, 156

[Ste89] Susan Stepney. Pictorial representation of parallel programs. In Alistair Kilgour
and Rae A. Earnshaw, editors, Graphical Tools for So ware Engineering, BCS
conference proceedings. CUP, 1989. 114

[Sut05] Herb Sutter. ¿e Free Lunch Is Over: A Fundamental Turn Toward Concur-
rency in So ware. Dr. Dobb’s Journal, 30(3), 2005. 25

[¿e06] ¿e LEGO Group. LEGOMINDSTORMS NXT Hardware Developer Kit, 1.0
edition, 2006. 27

BIBLIOGRAPHY 195

[TIO12] TIOBE So ware. TIOBE Programming Community Index for march
2012. http://www.tiobe.com/index.php/content/paperinfo/tpci/

index.html, March 2012. 29

[VHB+00] Erik H. J. Volkerink, Gerald H. Hilderink, Jan F. Broenink, W.A. Veroort, and
André W. P. Bakkers. CSP Design Model and Tool Support. In Peter H. Welch
and André W. P. Bakkers, editors, Communicating Process Architectures 2000,
pages 33–48, September 2000. 116

[Wel99] Peter H. Welch. Parallel and Distributed Computing in Education (Invited
Talk). In JoséM. L.M. Palma, Jack J. Dongarra, and Vicente Hernández, editors,
VECPAR’98: ¿ird International Conference on Vector and Parallel Processing -
Selected Papers, volume 1573 of Lecture Notes in Computer Science, pages 301–330.
Springer-Verlag, June 1999. 45

[Wel12] Peter H. Welch. List of occam Enhancement Proposals. https://www.cs.
kent.ac.uk/research/groups/plas/wiki/OEP, March 2012. 32

[WB05] Peter H. Welch and Frederick R.M. Barnes. Communicating Mobile Processes:
Introducing occam-π. In A.E. Abdallah, C.B. Jones, and J.W. Sanders, editors, 25
Years of CSP, volume 3525 of Lecture Notes in Computer Science, pages 175–210.
Springer Verlag, April 2005. 32

[WB08] Peter H. Welch and Neil C. C. Brown. ¿e JCSP Home Page: Communicat-
ing Sequential Processes for Java. http://www.cs.kent.ac.uk/projects/
ofa/jcsp/, March 2008. 29, 136

[W+94] Peter H. Welch et al. occam For All: Case for Support, 1994. 31

[WJW93] Peter H. Welch, George R. R. Justo, and Colin J. Willcock. Higher-Level
Paradigms for Deadlock-Free High-Performance Systems. In Reinhard Grebe,
Jens Hektor, Susan C. Hilton, Mike R. Jane, and Peter H. Welch, editors, Trans-
puter Applications and Systems ’93, Proceedings of the 1993 World Transputer
Congress, volume 36 of Transputer and occam engineering series, pages 981–1004,
Aachen, Germany, September 1993. IOS Press, Netherlands. ISBN 90-5199-140-
1. 115

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://www.cs.kent.ac.uk/research/groups/plas/wiki/OEP
https://www.cs.kent.ac.uk/research/groups/plas/wiki/OEP
http://www.cs.kent.ac.uk/projects/ofa/jcsp/
http://www.cs.kent.ac.uk/projects/ofa/jcsp/

196 BIBLIOGRAPHY

[WB01] Kirsten N. Whitley and Alan F. Blackwell. Visual Programming in the Wild: A
Survey of LabVIEW Programmers. Journal of Visual Languages & Computing,
12(4):435–472, 2001. 176

[Win12] Alan F. T. Win�eld. Robotics: A Very Short Introduction. Oxford University
Press, 2012. 36

[Woo98] David C. Wood. KRoC – Calling C Functions from occam. Technical report,
Computing Laboratory, University of Kent at Canterbury, August 1998. 58

[XMO12] XMOS Ltd. xCORE Multicore Microcontrollers Overview, March 2012. 26

[ZM95] Kang Zhang and Gaurav Marwaha. Visputer–A Graphical Visualization Tool
for Parallel Programming. ¿e Computer Journal, 38(8):658–669, 1995. 114

	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Listings
	Introduction
	Origins
	Relation to the Author's Papers
	Impact
	Contributions
	Structure

	Motivation and Background
	Trends toward Multi-core and Many-core
	Process-oriented Programming
	Why occam-pi for Process-oriented Programming?
	occam
	occam from Transputers to KRoC
	occam-pi
	The Transterpreter Virtual Machine

	Robotics
	Sense
	Plan
	Act
	Robotics Paradigms

	Robotics and Concurrency
	A Demonstration of Process-oriented Robot Control

	Robotics in Computer Science Education
	Pedagogy of Process-oriented Robotics
	RoboDeb and Player/Stage
	Cylons
	Life on Mars

	Wider Pedagogy of Concurrent Systems
	BACI
	SPIN and FDR Model Checkers
	Elucidate
	ThreadMentor
	ParaGraph
	PARADE, POLKA and XTANGO

	Process-oriented Robotics
	Process-oriented Programming on Robot Platforms
	Run-time Support
	Process-oriented Hardware Interfaces
	Calling into Existing Libraries
	ActivMedia Pioneer 3-DX
	LEGO Mindstorms RCX
	Surveyor SRV-1
	LynxMotion AH3-R

	Braitenberg Vehicles
	Process-oriented Robot Architectures
	Subsumption Architecture
	Colony Architecture
	Action Selection
	Motor Schema
	Distributed Architecture for Mobile Navigation

	Distributed Robotics Architectures
	Concurrency Patterns in Robotics
	Process-oriented Robotics: A Comparative Case Study
	Problem Definition and Experimental Setup
	Implementation Properties
	Evaluation

	Conclusions

	A Demonstrator Environment
	Visual Expression of Process-oriented Programs
	Drawing Process-oriented Programs

	Existing Visual Programming Environments
	Visual Programming for Robotics
	Visual Process-oriented Programming
	Summary of Features

	Design
	Limitations of the Visual Environment
	Robotics Support

	Implementation
	User Interface
	Process Canvas
	Process Definition Blocks
	Toolbox Processes
	Use of Toolbox Processes
	Emulation of Generic Types
	State of Implementation
	Reflections on Implementation

	Introspection and Debugging
	Errors
	Compilation Errors
	Run-time Errors
	Logic Errors

	Concurrency Errors
	Non-determinism
	Livelock and Deadlock
	Race conditions
	Debugging

	Related Environments
	INMOS Transputer Development System Debugger
	GRAIL
	POPExplorer

	A Debugging Environment for Process-oriented Programs
	Visualisation of Execution State
	Layout

	Proof of Concept Implementation
	Virtual Machine Support for Debugging
	Tracing
	Trace Visualisation

	Conclusions and Further Work
	Future Work: Process Architectures for Robotics
	Hybrid Architectures
	Platforms
	Dynamic occam-pi language features
	Parallel Languages and Robot Control Frameworks
	Network Distribution
	Multi-core and Many-core Robotics

	Future Work: Visual Design and Debugging
	Visual Programming
	Formal Visual Language Design
	Code Editing
	Code Generation Advancements
	Introspection

	Bibliography

